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We prove the following theorem: In a system of charged nonrelativistic bosons
with a finite particle number per unit volume and an energy spectrum o~ (|g|—g.)%-+
+ 1—p/o,, no condensate of momentum ¢= ¢, 0 can form in a second-order phase
transition. The theorem is intended as a further step towards understanding the
properties of pions in dense nuclear matter. It implies that if a pion condensate is
to be discovered experimentally, it must arise in a first-order phase transition or the
spectrum must acquire an anomalous behaviour (|g|-—g,)* " at the transition point
due fo fluctuations.

Recently (1), we have argued that neither thermal nor quantum fluctuations would
tolerate the formation of a pion condensate of momentum ¢ = ¢, ~ 2x (4 = pion mass)
in a second-order phase transition. Its existence was proposed on the basis of mean-
field studies of nuclear matter, if densities exceed a critical value of the order 0.5u%. Our
argument was proved only for the somewhat artificial limit that the pion fields =,
(a = 1, ..., N) obey a theory with isotopic Oy symmetry with N — co rather than 0.
The violent nature of fluctuations suggested, however, that the result should not depend
on this limit and that there must be a theorem of a rigor similar to those prohibiting
condensates in one and two dimensions ().

It is the purpose of this note to lend further support to this conjecture by present-
ing a no-go theorem for the thermal condensate with N = 2, i.e. when there are only
charged pions, say =+. Thus we are quite close to the true physical situation and dem-
onstrate the inessential nature of the limit ¥ — oco. The present proof has, however,
another unphysical feature: It assumes the pions to be nonrelativistic with a finite-
particle number per unit volume which could, in principle, be untrue in the would-be
pion condensate. This assumption should be removable by a more detailed study of
the interaction.

The physical system to which our theorem does apply is superfluid “He in which case
it excludes the condensation of rotons in a second-order transition.

() H. KLEINERT: Phys. Lett. B, 102, 1 (1981). There is a similar problem in solid-state physics
where a g # q, = 0 condensate cannot form in magnetic superconductors (the so-called cryptoferro-
magnetism), H, KLEINERT: Phys. Leff. 4, 83, 294 (1981) and in press,

(*) A. B. M1gDAL: Rev. Mod. Phys., 50, 107 (1978).

(" N. D, MErMIN and H. WaGNER: Phys. Rev. Lett., 17, 1133 {(1966); P. C. HOHENBERG: Phys.
Rev., 158, 383 (1967).
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Let v be the charged interacting nonrelativistic Bose field quantized according to
the canonical rule.

(1) [qu(":): '!p;r('t')] = 6q,q' .
Its dependence on imaginary time is given by

(2) ¥4(7) = exp [Hr]y, exp[— Ht],

where H is the Hamiltonian,
Consider the thermal Green’s funection

ur

(3) Glon, @) = [dr exp o, T1rg(m V30,

0

where (0> = tr (exp [— H/T10)/tr (exp [— H/T]} denotes the thermal average.
There is a spectral representation

dw —1
(4) G, q) = 5 o(w)
7T W, —
with
(8) elw) = {ZGXP [— (B + En)/2T][<{n|pglm) |*:

-270(0» — E,, + E,)2 sinh %} / S exp [— E,/T1,

which ensures that g = G(0, q) can never be negative. The same spectral function de-
termines also the commutator

(6) ¢ =< T e PR
= [ipqs #’q]> - _2; Q(w) —

and anticommutator

(7) = 15— [ 92 5(e) ctgh 2
a = <{wq’ wq}> — 2 Q((t) g PV :

Our no-go theorem will be a consequence of a simple but powerful inequality (4) which
holds among the three quantities a, ¢, ¢ as a consequence of convexity of the function
f(w) = wotgh(w/2T'). Recall that any convex function f(w) satisfies

(8) fly oy -+ pe ) < py f(wy) + paf(w,)

for arbitrary positive g, u, with p; + p;= 1. By going to infinitely many g;’s with
[+

S u;=1 we arrive at Jensen’s inequality

i=1

do dew
(9) f(f—z-;z M(w)w)é(f-z“;ﬂ(w)f(w))

() G. RoersTorrr: Commun. Math. Phys., 53, 143 (1977); J. Stat. Phys., 18, 191 (1878).
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in which u(®) can be an arbitrary positive function of unit area, i.e. [(do/2r}u(w) = 1.
But u(w) = ¢ 'o(w)/w has this property, due to (4), (6), such that we may conclude

[4] ¢ a
(10) —-ctgh —< -
g 2Tgq ¢

Moreover, because of the canonical commutation rule, a = 1 + 2(@4);%) such that (10)
implies

(11) {ygvq > (exp[g/T]1—1)1.

Thus the number of interacting particles at each momentum state is bounded from below
by the Bose distribution with ¢~ = G(0, g)~! as an effective energy. Notice that the
equal sign is achieved for the free case where

qz
1= G0, @)= ——— .
g (0, q) 5 .z

We note in passing that the inequality (11) immediately eliminates conventional Bose
condensates in two dimensions, since at the critical point G(0, g)-* would have to vanish
like g2 resulting in a divergence of the number of particles per unit volume (%).

Consider now the case at hand. Suppose there exists a condensate of the rotonlike
nature suggested by mean-field studies in nuclear physics (2) (or magnetic superconduc-
tors (1)). By rotonlike we mean that the interacting inverse pion propagator would
behave, near some critical density g,, as ()

(12) G40, q) ~ (lq] — ¢.)*+ 7, TEI—QE,

if the momenta lie in the neighborhood of a spherical shell of radius ¢, = 0. Inserting
this into (11) we see that under the condition of a finite number of particles for unit
volume, g ean never reach g,.

Our theorem should not be abused to discourage experimental search for a conden-
sate. There are two possibilities by which nature can escape the conclusion: one pos-
sibility is that the transition must take place to first order and this would, in many
ways, facilitate its detection even though it would not announce itself by marked pre-
transitional fluctuations (since these would remain small even at the transition point
itself). Rather, one should look for typical first-order characteristics («supercom-
pression », « superexpansion », transition enthalpy) (5).

As a matter of fact, a first-order transition was deduced in a completely different
study of the condensation process a long time ago (¢8). Our theorem, therefore, favours
those author’s results over the more standard ones quoted in ref. ().

The other possibility is that our assumption of a rotonlike spectrum (12) was
too restrictive and that the energy vanishes in some wedgelike fashion, say
G-Yg)~(|q] —)* 7+ v. Then there can be a continuous phase transition with very
interesting properties which would take place in the same region in ¢~ g,, where

(°*) H. KLEINERT and F. PALUMBO: to be published.
(°) F. CALOGERO: in The Nuclear Many-Body Problem, edited by F. CaLoGgEro and C. CIOFI DEGLI
ATTI, Vol. 2 (Roma, 1972), p. 535; F. CALOGERO and F. PaLuMBoO: Lett. Nuovo Cimento, 6, 663 (1973).
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pion condensation was expected previously. The high-density phage would not be truly
ordered but nevertheless be characterized by an increased « stiffness » of nuclear matter
against local isotopic spin rotations. This is in complete analogy to a thin surface
of superfluid ¢He which has bending energies (7) for local phase changes, even though
there exists no long-range order, in agreement with the no-go theorem of ref. (3).
It is well known that in this system there is a phase transition characterized by a
breakdown of local stiffness (*®) which is due to therwmal generation of freely moving
vortices. Since such objects exist also in the would-be pion condensate, they could give
rise to an interesting set of new and unexpected phenomena (%).
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The present considerations formed part of a lecture delivered by the author at a
meefing of the German Physical Society on Collective Phenomena at Bad Honnef in
June 1981 and distributed as a preprint.

(Y J.M.KoSTERLITZ and D. J. THOULESS: J, Phys, C, 6, 1181 (1973); J. M. KosTERLITZ: J. Phys. C,
7, 1046 (1974).

(*) See A, F. HEBARD and A. T. FioRY: Phys. Rev. Lelt., 44, 291 (1980).

(®)) This order-disorder transition is discussed in H, KLEINERT: Lell, Nuovo Cimenio, 34, 103 (1982),



