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This is a new and, as we believe, powerful theory for a system of dislocations and
disclinations in solids, treated in the continuum limit. The defects behave under stress
in precisely the same way as spinning particles in a gravitational field. As the tempera-
ture T approaches zero, dislocation lines are the dominant defects. They correspond
to fields whose spin S?=s(s+ 1} tends to infinity like (ub/7)%, where b is the
Burgers vector and u the shear module (*). This amounts to a contraction of the rota-
tion group O;. In thislimit, the three spin components commute and ¢an be measured
simultaneously as a Burgers vector. If the system is heated, however, the spin decreases
and starts fluctuating. The present theory automatically contains the effect of disclina-
tions, if the defect field has spin-orbit coupling. Thus it can truly be called a theory
of defect fluctuations.

Our considcrations are based on a recently developed gauge theory (%:2) of melting
in which the free energy of dislocations under stress has the form
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(1) H(x) = fu(%) + fa(x) = % + m?|py(x)[* +
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where b are the fundamental Burgers vectors, ¢,(x) the corresponding dislocation fields,

(*) We shall use natural length units in which the cell volume ¢ is one. Thus, (,ub/T)'v§ is the dimen-
sionless quantity.

() H. KLEINERT: Lecture presented at the Conference of the Kuropean Physical Society in Lisbon,
July 11 (Berlin, 1981); Let!. Nuove Cémenio, 34, 464 (1982).

(2) H. KLEINERT: Gauge Theory of Linelike Defects (New York, N.Y., 1¢83).
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h,:(x) is a gauge potential from which the stresses can be calculated as (*)
H
(2) 0y = 3 €;51 Eimn Ok Om fyn(X)

and » is the Poisson number, respectively (?).

Let us first realize that the elastic energy can be considered as a linearized Weyl
theory of gravitation: Writing a metric g;(x)= 6,;+ h;(x), we find the linearized
curvature tensor as (%)

(3) Biim= %(akazhim‘F 0 Oplor;— (’5‘—’70)) + O(R?) .
The Einstein tensor is defined as
(4) . Glcm == Rikhm'" %gkailiI .

It satisfies D,G*,=0 due to the Bianchi identity D, R+ DiR;jim~+ DiBsmr=0,
where D, is the covariant derivative. Inserting the linear approximation, we see
that u@/ coincides with the stress o,;,. This suggests a natural extension of linear
elasticity into the nonlinear regime using the energy (**)

_1 v
5 =143 Gz i2
(5) -Fel f 56'\/{]4( P 1+VGL ),

which is invariant under Einstein’s general (°) co-ordinate transformations &?— x"*(x) =
= xt— &) (***).

Within such a generally covariant framework, the coupling of defect fields has little
freedom. For a free field gu(a) of spin s, which forms a unitary representation of the

rotation group
(6) £Sa’ Sb] = isabcsc s

this coupling is given by

{7) Fozfd?’w \/g{gij(Di‘P)i(Df‘P)a‘l‘ m3|@al?}

(") See footnote on the preceding page.

(**) The phase transition in this theory is shown to be related to melting in H. KLEINERT: Phys.
Lett. B, 113, 395 (1982).

(***) Under which vectors transform as vi(x) — v'{a’) = v/(x)(dx"¢/dx’), vi(x) —>’lJ;(:IJ') = p;(x)(dx!/0x't)
or infinitesimally,

Ogat = =&, Opvi(x) = v'ix)—vix) = £ 900 — 8;5407,
O vi(x) = v(x) —vi(x) = & 830 + di&tvy
with corresponding laws for tensors,
() L. D. Laxpau and E. M. LIFSHITZ: Theory of Elasticity (New York, N.Y., 1959).
() L. D. LaNpAU and E, M, LrirsHITZ: Classical Field Theory (New York, N. Y., 1959).

(®)) For the history and recent studies of such theories in the context of general relativity see, for
example, K. 8, STELLE: General Relalivilty and Gravitation, 9, 353 (1958).
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where D, is the covariant spinor derivative (5)
¢ b
(8) (Di@)o= a'iatxﬁ'—é o 8%ap | P8

and 8% =¢,.8,. The quantity w;,(x) is the spin connection which is defined via the
square-root decomposition of g, (x) in terms of triads g, = e,;(x)e%(x) as

(9) Wigp = €%, Wgqp = €°% '.I‘Z (Qabc + cha_ ‘Qcab)
with
(10} ‘Qabc = eai(ebj ag‘ eio— ecj aj‘ ebi) = 'Qacb .

The decomposition of g,, is arbitrary up to loecal index rotations (with dgx®= 0)
(11) dge®{x) = y5(x) e (%) , Yav = — Vba
and so is the coupling to matter, since

g b
(12) OpPalx) = 3 Yar{%) SPnppp()

and, due to {9),

{13) S0 = . @up+ Vo Osop + Bi¥Vap -

Here, upper and lower indices a, b, ¢, ... are the same and repetition means contraction.
TUnder general co-ordinate transformations, ¢.(x) behaves like a scalar

(14) Oppa(x) = & 0,04(x)
such that ¢,p,(x) is a proper vector

(15) 048;9n= &8;0,00+ 0,870,p4
and 80 is w,;y,, since

(16) 6E6ai: Ej 8jeai+ aifjeaj.
To linear approximation, we can write
(17) 8ai=6ai+ %hai+ %hc,u"

where b and &' are arbitrary small symmetric and antisymmetric matrices, respectively,
Then
(18) Diay = § (B hia— Balia) -+ } Bihgy -

Now &), are gauge fields for local rotations which they compensate via hl,—> by - Vaps
while &, are gauge fields for Einstein transformations, if these are combined with the

(*) See, for example, J. SCHWINGER: Phys. Rev., 130, 1253 (1963),
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local rotation contained in dx'/ox. Specifically, we take

O omp = O T Onlye=t0.0—02a)

and see that (D,p)s transforms just as v,@x, since the derivative (i/2)2,7,8% is can-
celled by the gauge transformation 6., by = 0,& -+ 8,& in (18) and (8).
Let us see how the fields couple to matter to linear approximation. Writing

i = 51‘i+ hz’j » 9‘“= 6“'—hz':i s \/§= 1+ %hm-

and denoting the stressless matter energy by

fm= f0+ fint': Iazlpo‘]g—i_ fint’
we find

(19) -Fm =fd3m fm(x) - % jdsw {hij(zai‘p: ag‘()?oc— 6ia‘fm) +

i «
+ (20, hp— 8,-h(';b)§ ‘P: aiSab(Pa} + O(h?) .

The first term is —3§ {d%z &,;65;, where 67, is the canonical momentum tensor of the
matter field 65, = 8,9, 3;¢ 1 c.c.— 8;,f,,. The second term brings in the spin current

RN
Sab,z’(x) = ”é 97;61' SepPa

It gives the coupling of %,, to Belinfante’s pure divergence correction to the energy-

momentum tensor. Recall that BELIFANTE introduced the proper energy-momentum
tensor as (%)

(20) 07 = 05— % 2(Se,e+ Sese+ Siiys) 5

where
Sai= — 17,859, 93‘ = 78;0;9 —04;fm
with n*= 8f,,/08,¢ and all fields have to be summed. This follows directly from the

general definition +/g6F =e,;8f/3¢,’. The derivative of +/gg*’ gives the canonical
part 65, while

€a; Bfm/awkab' 8wkab/88ui = _fd3w Sedsk kaab/seai
renders the corrections in (20), since to linear approximation:
SWan/Bes’ = — % ( 01 0ap G5 -+ 0010 0q; + 0004005 — (¢ & d)) 0@ (x—1)

minimization with respect to Sh' ensures conservation of the spin current 8%-¢ and A’
decouples.

("} F. BELINFANTE: Physica, 6, 887 (1939).
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How does our previous dislocation theory fit into this general framework?
Comparing (7) and (1), we see that S corresponds to ub/T+ such that for 7'— 0,

S2—s(s+ 1) = ub?/T?—> 0.
But in this limit, the rotations experience a group contraction, sinee

T T T2
— 8, — 8, | =1dep,— 8, — 0.
b ub pb®

As a consequence, the fields ¢, may be labelled by the continuous set of Burgers vec-
tors themselves. Under local rotations, they merely change their phases

1
(21) ‘pb_R>‘ exp [_2' Yb I’"/T] Pb » V= 8cc:l.bywb »

while the substantial part of the combined Einstein transformations is

2
(22) 6comb(pb|subst = 5 o X E'bM/Tle ’

which is compensated by 0.ompfap = 0.5 + 05&,-

These are just the gauge transformations introduced before (12) in a completely
different way.

Notice that, for T—0, only the S~ bu/T piece of the coupling survives (see (19))
in agreement with the energy (1) which was shown to lead to the correct Blin for-
mula for the forces between dislocation lines (1).

The new energy (7) is the proper theory of dislocations which is valid also for large
temperatures with small S2.

The gquestion arises as to the size of S2 in the melting region. It can be related to
Lindemann’s parameter (3)(*) +/s(s-F 1) = (1/22.8)2. Experimentally, L varies from
120 to 180 for many materials such that s~ 25-=60. There the spin remains quite
large and the Abelian approximation S~bu/T is excellent. For materials with
small I, however, the present theory could give certain corrections.

Apart from such fluctuations in the Burgers vector there are two features of this
theory which constitute a significant progress:

1) For T > 0, there arc couplings of h,, which have relative size O(T) with
respeet to the pure dislocation forces contained in (1), In order to exhibit the new

terms, write the full coupling — 3 [d3x k07, as

(23) — 3 fd%; {hi:iogi + 20, by Sab,i} :fd3m {ak hi;iDi;r',Ic“““ Oaha Sab,i} s
where

(24) D= % (%99% + @; %)

(®*) A. R.UsBBELOHDE: The Molten State of Matter (New York, N. Y., 1978). Sec, for exa_mp]e, p. 63, 64.
(" Reeall(®} L = 5.85 0pauye ¥ (M/Tmm)é‘ = 5.85- (67 Vo[ Ton(1+ Heljci — 1)), where v is
the volume per cell, i.e. » = b® and ¢,,; = sound velocities.
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is the canonical distortion current. This coupling was absent in (1) due to its being O(T)
with respect to the S, ; term for T—0.

2) There 18 a simple way in which disclinations enter the theory. If the matter
field theory (7) is modificd to include spin orbit coupling terms (for example
|8%e,iD;¢|?), then 67 is no longer symmetric and h,, in (19), couples as

3 [0 (1, (05— 05) + 0.0y S}
This can be rewritten as

(25) —%f@wwm@ww¢+L@ah

where L ;=,0y;— %,05; is the canonical current of orbital angular momentum. Now
the variation &h' leads to the sum S-- L that is divergenceless. Thus the current
8o, by itseli to which 8,k couples in (23) is no longer conserved and this reflects
the well-known fact (°) that, in the presence of disclinations, the dislocation current
Oig = & EapeSpe,; Satisfies

0; %4 = Eapobe

where 6,, is the so-called disclination density which is divergenceless, 9,0,,=0.
Here we calculate 2,%;,= e4,05, such that the disclination density of the classical
literature on elasticity (°) turns out to be nothing but the canonical energy-momentum
tensor of the fluctuating flield theory. It is well known that disclinations can be con-
structed from continuous superpositions of dislocations (%), and this is reflected here
by having the grand canonical ensemble of both of them deseribed in terms of single
fluctuation fields. Thus what we have constructed is really a full-fledged theory of
defects both dislocations and disclinations.

The implications of defect fluctuations on the phasge traunsitions solid-liquid crystal-
liquid will be studied elsewhere.

* %k %

The author thanks 8. FErrARA and E. KrONER for interesting dizcussions.

(") R. DE Wir: J. Res. Natl. Bur. Stand. 4, 77, 49, 359 (1973).
(*) J. C. Lt and J. J. GroMaN: J. 4ppl. Phys,, 41, 4248 (1970); T, Mura: Talk presented at the
Europhysics Conference on Disclinations, Aussois, France, June 1972,



