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We propose a new, unified theory of defects and stresses in the continuum limit of
golids. The total energy has a generally covariant form involving G,;GY, where G,;
is the Einstein tensor of stress, and the scalar curvature R of the defects (which includes
dislocations and disclinations),

The final form efficiently unifies two previously unrelated geometric formulations
of defects and stresses.

In the continuum theory of defects and stresses in solids, geometry plays two im-
portant, separate roles. The first goes back to Kondo’s observation (!), in 1952, that
dislocations are the discrete version of Cartan’s torsion (2) and has led to a co-ordinate—
independent description of dislocations and disclinations in terms of a defect dreibein
field % (*) (which denotes the tangents to the co-ordinate lines chosen arbitrarily in
the crystal) and its metric g,p = €®senp (>*). If the connection is defined as usual
for spaces with torsion by

(1) Fpg¥ = e 05,8 = {Vﬁ} + Kug?
&

with
K«xﬁy = Saﬁ?"“ Sﬁyoc + S”aﬁ ’ Saﬁ = ‘5‘ (Faﬂ - Fﬁcx?) )
the torsion 8,4” is related to dislocations and the curvature Raﬁya = ¢%(D,05 — 0p0a) €ay

to disclinations. We can give an extremal principle for this structure by postulating
the defest energy

(2) Pt = f 5/ g0 Rap(g, K)

('} K. Koxpo: On the geomeirical and physical foundations of the theory of yielding, in Proceedings
of the Il Japan National Congress on Applied Mechanics (Tokyo, 1952).
(*) For a review see H. KrRSNER: Lectures presented at the 1980 Summer School on the Physics
of Defects in Les Houches.

1
(*) The indices « a» have the trivial metric 1 y el gy = €% .

1

(*} I. B. DZYALOSHINSKY and G. E. VOLOVIK, Ann. Phys. (N. ¥.), 125, 67 (1980).
(*) B. Junia and G. TovLEss: J. Phys. (Paris) Lett., 16, L3%5 (1979).
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and defining

1 3F 1
3 R . S - O
(3) 2\/97? S9us 2\/9“:/

8-FYdef
SK g

as the symmetric momentum tensor and the spin current, respectively. Performing
the derivatives we find

(4) gt = 2(8ag” + Sa¥8ps" — 85" 80s”)

(5) = %P — Dy + 28,0°) (™Y — afr® - arh)
where

(6) 0% = R*F — 14°PR

is the Einstein tensor of the defect field and D, the covariant derivative. Linearizing and
identifying (2} e,a= 25u,(x) as the derivatives of the displacement field u,(x) of the
crystal, the connection Ihg, = 8aeys = 840au, may be split into symmetric and anti-
symmetric parts as Iygp= Ta@gy + Tas,91 = Qattgy + Oxwgy Where ugp= (Satg + Opita)/2
is the strain and wup= (8,ug— Ogus)/2 the local rotation. This can be brought to
form (1) as

Iagy = $(8agpy + 0G0y — 8yGap) + Hapy

with a metric gap = 2uap and Hypy == Sxwgy -+ 0puga — Opliya Which, in this context, is
commonly called contortion (°). From these identifications we can calculate, using (4),

(7) Uypg = — Kaﬁ + 6aﬂKy'y = Egyd a'y(uda + Wsa) = EByd a'y 26U

where we have gone from antisymmetric tensor indices to vector indices via eoyp==
= Yeayooys,p, Kap= 3 Kuyotyop.

T quation (7) shows that the field spin specifies the failure of the translations to be
integrable. This quantity is commonly called dislocation density. Similarly, from (6)

we find

(8} Oap = €pys 0y 05004 ,

which is the analogue quantity for the rotation field, the disclinafion density. Inserting
these two relations into (5), we find the symmetric energy-momentum tensor

(9) Nag — Brxﬁ““ Egyo aderx = Exyo €foT Oy Og ot »

which is the standard incompatibility of strains (2), also referred to as defeci density (°).
The conservation laws following from the symmetry of action (2) are

(10) (Dy + 2846°)0;* + ZSM"’L‘)””——— %fxv,:'uRlurx =0, (Dy + 28,6°) ol . grx__ gud

(*} R. DE WirT: Solid State Phys., 10, 249 {1960); J. Res. Not. Bur. Stand. Sect. 4, 77, 49, 359 (1973).
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and reduce, in linear approximation, to the well-known relations (°)
(11) 030, =0, 0p%ag = Eayolys »

which state that disclination lines must be closed, while dislocation lines can only end
on disclinations.

The field equations for » and « are = 0, « = 0 such that defects are absent at zero
temperature, If the system is heated, however, fluctuations may cause a nonzero ave-
rage defect density, due to the nonlinearity of the energy (2).

The second place at which a geometric description arises is the physics of internal
stresses (8). This is completely independent of the first, since it holds also in the absence
of defects. It is based on the observation that, without external-body forces, the sym-
metrie stress tensor ¢,; is divergenceless and may be identified with wul?/y times the
Einstein curvature tensor
(12) Gia' — %Eikl Ejmanlmn
of a Riemannian space with dreibeins e*,(«) and a stress metric g;; = e*,(x)ea,(x), where 1
is the lattice spacing, » measures the nonlinearitics of the erystalline forces and p is
the shear module. If we use the Poisson number » as the second elastic constant, the
stress energy takes the form

(13) 7= [ vala,, ¢ AT
— — P .. 2y e K .
87 4yt I\ 1+ °

which is invariant under general local co-ordinate transformations
(14} Ope”y = E0;6% + 0,8¢% .

Also it is trivially so under local rotations

(15) Spe’y(x) = wipely(w)

since Fy is a functional of g, only.

The relation between these two approaches has remained a challenging open pro-
blem (see ref. (?)). It is the purpose of this note to propose a possible solution which
may eventually be extended to a proper unified geometric theory of defects and stresses,

The basic idea goes back to a recent observation, made in the context of a theory
of melting, that a grand canonical ensemble of fluctuating random loops of dislocations

(®) H. SCHAEFER: Z. Angew., Math, Mech,, 33, 356 (1953); S. MINAGAWA: RAAG Memoirs of the
Unifying Study of Basic Problems in Engineering and Physical Sciences by Means of Geomelry, edited
by K. KoNDO, Vol. 3 (1962}, p. 193; K. KoNDpo: RAAG Memoirs of the Unifying Study of Basic
Problems in Engineering and Physical Sciences by Means of Geomelry, edited by K. Konpo, VolL. 3
(1962), p. 148; Y. YAMAMOTO: RAAG Memoirs of the Unifying Study of Basic Problems in Engineering
and Physical Sciences by Means of Geometry, edited by K. KoNpo, Vol. 2 (1958), p. 165; S. AMARI:
RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Sciences by
Means of Geometry, edited by K. KoNDo, Vol. 4 (1968), p. 153. See also E. KRONER: Kontinuums-
theorie der Versefzungen und Eigenspannungen, in Ergebnisse der Angewandten Mathematik, Vol. 5,
edited by L. LdscH and F. LoscH (Heidelberg, 1958); Lectures presented at the 1980 Summer School
on the Physics of Defects in Les Houches.
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can be described by a field theory, whose coupling to the stresses is gauge invariant.
Upon further study (8), this gauge invariance revealed itself as a limiting form of general
co-ordinate invariance in the low-temperature limit (*) in which the spin of the disloca-
tion fields s~ bul?/T grows to infinity such that its spatial components commute. In
this theory, the dislocation density of linear elasticity (where the indices a and 7 are the
same) turns out to be simply the canonical spin current density

(16) o‘ai — %sabc Sbc,i

with §,,' = — (i/2)2'S,,¢ in terms of matter fields ¢, #= &f,/¢8;p, and spin matrix
Su(f,, 18 the matter energy density). The divergence of this object can be calculated,
since spin plus orbital angular currents are conserved, as

(17) aicxai — e %aabcai(wbeci_wcebi) — saicez‘c R

where 6% is the canonical momentum tensor. This is to be compared with the present de-
fect formulae (11), such that the disclination density turns out to be simply the canonical
momentum tensor of the defect field theory. Thus the fluctuating disclinations are auto-
matically included in this theory. Moreover, relation (5) is reproduced: it is the standard
connection between the symmetric Belinfante momentum tensor (here #;,) and the cano-
nical one (here 6,;), both differing by pure gradient terms involving the spin current
(here «,,). Thus (2) is an acceptable defect field theory in the continuum limit.

But then there is no problem in coupling defects and stresses. According to our work
in ref. (8), defects move under stress as if they were spinning external particles in a
curved space. It is well known how to introduce spin into a gravitational field (?).

For this we go to nonholonomic co-ordinates defined differentially via 8,= h,” 84,
where h,*(x) are orthonormal dreibein fields, just as e,%(x), and

1
n
Japr = ha“hbﬁg“ﬂ(x) == 1

lab

just as g, = €,%€,® gas(x). The only difference between e, and h,” is that, when calculat-

A
ing connections I'ys” as in (1) but using £,%, we allow only the torsion to be nonzero, while

the curvature vanishes, 1}:3“37‘5 = 0. The defect energy can be expressed entirely in
terms of k,* and K,z" in the form

N
(18) 'Fdef[k’7 K] = fdﬂ.%‘ I/g haahbﬁRaﬁab ’
where
(19) chﬁab == aaAﬂab'— aﬁA-aab‘_‘ [Am Aﬁ]ab

(* Which usually comprises the melting point, 7.e. at T = Tneit, the value of s is still quite
large. For a Lindemann parameter L = 120 one has s = 60 and s grows like L? (?).

(*} H. KLEINERT: Berlin preprint (June 1981) (September 1981). Lecture presented at the Conference
of the European Physical Sociely, Lisbon, July 1981, Phys. Letf. 4,89 294, (1982).

(*) H. KLEINERT: Leit. Nuovo Cimento, 34, 471 (1982),

(*) F. W. HEHL, P. vAN DER HEYDE and G. D. KERLICK: Rev, Mod. Phys., 48, 393 (1976).
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h
is the covariant curl of the gauge field Auu= (A4),p = Kuwp— Kagp and K is the ori-
ginal contortion (indices can be changed from « to a via h,%). Similarly, the stress energy

8
can be brought to co-ordinates 2%, by simply replacing g,, by ii"‘jza,- in (13), i.e. F,[ism"‘] =
3 3
= F,[9;;= 1" ;hs;]. Now the movement of the spinning defect particles ,” in the stress

field f:“i can simply be obtained by adding Fs[;[l and Fy [k, K] with A% replaced by
By == haﬁhﬁ ;v
& i

8 E 8 [
(20) Flh, b, K] = F[h] + Fy, h, h, K—K].
8
Minimization with respect to k%, leads to
Eqy6 Efar Oy O O — % (84502 — 840p) 0py = 2unsps + nonlinear terms,
y

which is the well-known source equation for stress in the presence of defects.

Minimization with respect to k% and K,z gives the field equations of defects o« = 0,
7 = 0, where « and # are given by (4) and (5) except that all quantitics are expressed
in terms of «stressed » dreibeins 2 rather than h.

The theory can be completed by adding torsion terms to the stress energy, but due
to their experimental smallness we have not yet done so.

It was shown before (7-8) how the fluctuations in the defect field correspond to summ-
ing over all closed defect loops. Notice that there still is freedom in adding interactions
among the defects which will play a cruecial role in the study of phase transitions such
as melting (7).

In conelusion we see that, in the absence of stress, the field theory (20) has all the
properties of our defect field theory except for its spin s having the specific value s = 2.
Previously, (%) we had required s to be large. In order to understand the difference
with the present treatment, we must remember that, in our previous theory, the largeness
was due to the finiteness of the Burgers vector b. In the present proper continuum
theory, b goes to zero. In order to cope properly with the noncommutative aspects of
defects, however, it is essential that the spin does not become completely zero. The
value s = 2 scems to be the smallest possibility capable of realizing the nontrivial alge-
braic aspects of the defect structure in a true continuum theory.



