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Summary, — We argue that local Higgs fields may correspond neither to pointlike
particles nor to bound states of some more fundamental objects. Rather, they arise

naturally in pure gauge theories as a convenient technical device for parametrizing line-
like disorder.

Our reasoning is based on the observation that nonlinear gauge field fluctuations
which are singular on a random set of loops are responsible for many phase transitions
of three-dimensional systems such as solid-liguid, superfluid-normal and nematic-normal.
They probably are the origin of permanent confinement in QCD. We propose their
explicit inclusion into the partition function by developing a field theory of random
loops in minimal interaction with the gauge fields which then are free of these singular
fluctuations. The result is a Higgs-like gauge theory which permits a simple study of
phase transitions. In particular, the residual gauge fluctuations may sometimes be
approximated as harmonic such that many difficulties of non-Abelian theories disappear.

Perturbation theory is an efficient tool for summing up field fluctuations as long
ag these are approximately harmonic. As interaction terms become sizable, there are,
in general, important contributions, to the partition function, of macroscopic fluctua-
tions in which the field is singular on points, lines, or surfaces. The singularities are
usually damped on some short-distance length scale. Pointlike structures seem to be
the least relevant, due to their high energy. Linelike singularities, on the other hand,
can take many possible shapes such that at some high enough temperature T, their
entropy always over-compensates their core energy leading to their proliferation. Inter-
actions between the lines may favour this process and depress the actual transition
temperature to such low values that this becomes the dominant mechanism for many
phase transitions such as melting of solids (*2), superfluid-normal of He II (*), and
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clearing of nematic crystals (). Their omnipresence seems also to be responsible for
the confining phase of QCD (5),

Apart from that, they are interesting objects on their own capable of forming highly
regular networks in solids (°) and liquid crystals ().

A linelike random chain in 3-space of length L has an end-to-end probability distribu-
tion (8)
(1) P(x —x', L) = (2alL/3)"texp [

3 e
mzl—L (x—x »

where 1 is the lattice spacing. It may, therefore, be seen as the propagator of a free
nonrelativistic field of mass M = 3/l with time continued to an imaginary value —iL:

(2) P(x—a', L) = {Ty(x, )9 (%, ) pmprei -

Thus the Lagrangian

1
3 & = yhx, t)[i0, -+ — 8|y, 1
(3) yvix )(@’+2M )’P( )
can be used to study a grand-canonical ensemble of random chains and the current
4 (1) =, &) B, ¢
(4) Jix, )—2Miw(x, ) dy(x, 1)

is the second quantized version of a single chain along x(?) for which it would read,
in the absence of fluctuations,
dx(?)

(5) Jjlx, 1) = “ar 0P — x(t)) .

If the chains can have any length with a distribution exp [— (m?/T)L], the probability
becomes (°-1%)

(o]

m2 d3k .
(6) P(x—x') ocde exp [—_f L] Plx—a', L) ocf exp [ikx]
0

(27)3 6m2/1T + k2’

which is the correlation function of a Klein-Gordon field of mass pu? = 6m?/IT and field
energy (*)

(7 B, 9 = [0 fyw) = 7 [aa(35"(x) Bg(x) + w24 () p(2)

() W, HELFRICH: Berlin preprint (1981).

(*) R. P. FEYNMAN: Nucl. Phys. B, 188, 479 (1981).

(*) 8. AMELNICKX: in Dislocations in Solids, edited by F. R. N. NABARRO (New York, N. Y., 1979).
(") 8. MeiEBOOM, J. P. SENA, P. W, AnpERsoN and W. F. BRINKMAN: Phys. Rev. Lell., 46,
1216 (1981); H. KLEINERT and K. MaKi: Fortschr. Phys., 29, 219 (1981); H. KLEINERT: Phys.
Lett. 4, 81, 141 (1981). -

(! H. YAMARAWA: Modern Theory of Polymer Solutions (New York, N.Y., 1971).

(*y H KLEINERT: Phys. Leit. 4 89, 294 (1982) Leff. Nuovo Cimenio (in press).

(1°) H. KLEINERT: Berlin preprint (September 1981).

(*) The factor T in front shows that @(«x) describes fluctuations which are purely entropic in
character (*:1°),



NEW DYNAMICAL ORIGIN OF HIGGS FIELDS: ETC. 211

Notice that the parameter ¢ of the previous description (3) has disappeared in favour
of a truly local field ¢(x). As chains come close to each other, they will, in general,
interact via some nonlocal potential V{g, ¢']. The partition funection

1
(8) Zy = f F¢ Pp'(x) exp [— = {Falo, 9'1+ Viw, qo*]}]

thus describes a grand-canonical ensemble of closed interacting random chains. As a
matter of fact, the Feynman diagrams arising in a perturbation expansion of Z can
be viewed as a direct image of all possible configurations included in the sum.

The chemical potential has two terms:

(9) m? = m? —wT .

The first accounts for the core energy, the second for the entropy (w a log6) per
unit length. Obviously, at some temperature T, = mZ?/w, the chemical potential
always changes sign thereby destabilizing Fy[g, ¢']. Usually, V[, ¢'] prevents a cata-
strophe and the field settles at a nonvanishing value <{g{x)> = ¢, exp [iy,]). This is
observed as a phase transition. The disorder phase is characterized by long-range
fluctuations associated with field configurations @y exp [i(y, + 8y{(x))], since their energy
goes as

(10) Fooc Y E2(8y(k))?.
kE

Such Nambu-Goldstone modes may be called « hot sound » (°:1?), since they are precisely
the disorder analogue, at high temperature, of « zero sound » seen in ordered systems
at low temperature.

Suppose now that a self-interacting pure gauge theory is suspected of having
important large anharmonic fluctuations singular on a random set of loops and con-
sider the partition function Z = {24 exp[— (1/T)F[A]]. The functional integral com-
prises both regular and singular gauge field configurations A(x). Our proposal is to
evaluate this integral by simply adding to the gauge field energy the random chain
expression Fy(@, ¢'] + Vg, ¢'] in which the chain field is coupled minimally to the
gauge field 4 via the usual covariant derivative

(11) Op(x) - Dy(x) = (0 —id)p(x)

and integrating instead

1
(12) Z= f 24" (x) | D9 Do’ (x) exp [ﬂf {FrA™ + (Folp, ¢'1+ Ve, qﬂ)}] o’

but with 2A4°* now running only over gauge fields free of line-like singularities (*), all
of these having been transferred into the explicit @(x) field. This new Higgs-like
representation of a pure gauge theory has the formal advantage that phase transitions
can be studied in analogy with the Ginzburg-Landau theory of superconductivity with

(*) This statement can be made more precise by giving the Fourier expansion ot these fields 4™¢(k)
an ultraviole cut-off /1 with A-! larger than the size of the cores of the singularities.
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the only difference that ¢(x) describes disorder rather than order and destabilizes for
large rather than small temperature.

Apart from this, our representation has an important property which we believe
will render non-Abelian gauge theories solvable in simple terms: If a phenomenon
happens to be dominated by linelike fluctuations (*), the remaining gauge fluctuations
in A"%(z), which now are free of such singular field configurations, can be approximated
as harmonic. Thus, with respeet to such phenomena, non-Abelian pure gauge theories
do not differ much from their linearized version in our representation (12) (**). But
this is Abelian in character and displays a well-understood Ginzburg-Landau-type
behaviour.

In order to convince the reader, we illustrate this property with a few examples,

1} An elastic continuum has a free energy (1!)

(13) F,= d3m—}— 0;(%x)2— y 6:(x)?
el 4'“ %3 1*—|~’U it ?

where u and v are elastic constants and o,;(x) is the symmetric stress tensor which
satisfied 9;0,; = 0 such that we may reprcsent it 2s a double curl.

(14) 0:(%) == €;210% Eippy O Moy

with the obvious invariance
hln(x) e hln(x) "l’ al En(x) “l’ a'n El(x) .

It will be convenient to continue the discussion not with h;,(x), but to introduce a
stress potential A} = ¢,,,,8m P, Which transforms as

(15) Aj(x) — Aj(x) + 8;4%(x)

with A%(x) = &;,, 0, E.(%x) being arbitrary, purely transversal functions (i.e. &; AP = 0).
In terms of A!, the elastic energy becomes

1—v
14w

1 ) o
(16) I [A] =fd3m4— 84 (x) {P(“’ -+ P2 L P“’O)} 04 (a)
s i1,4'1"

with P®? projecting out the spin s helicity A content of A!.
Thus the correlation function of the A% field becomes

) " 2 ~ A ~
(1) (Ajky A k)Y = %@{p{z,z)(k) + Pk - 1+ Pu,m(k)}
il,i'’

11—

in the gauge 9,4 (x) = 0 (notice that 9,4]= A}=0 by definition).

(*) Notice that magnetic monopoles which are supposed to be responsible for quark confinement
are running along world-lines.

(**) The nonlinearities are also necessary to incorporate the effect of the omitted non-line-like singular
field configurations.

(*'y L. D. Laspav and E, M. LirsHITZ: Theory of Elasticity (New York, N. Y., 1959); p = modulus
of rigidity, v = Paissen number.
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What we have written down is an Abelian gauge field theory for linear elasticity.
For large fluctuations this is certainly wrong. In fact, nonlinear versions may be con-
structed by introducing a metric ¢;;(x) = 0;; + 2h;;{x) and viewing 6;; = ;51 8;mnOxOmbin
ag the linearized version of the divergenceless Einstein temsor ¢;; = B;;— §g;;R;; in
three dimensions. Then (13) corresponds to Weyl’s gravitational theory which may be
used as a non-Abelian gauge theory for nonlinear elasticity (*2). In general, there will
also be higher powers of R. Such nonlinear theories have large fluctuations concentrated
around points, lines and surfaces. In a real crystal, these are observed as defects.

Suppose now we want to study the process of melting in an ideal infinitely extended
simple cubic crystal. This process is widely believed to be caused by the explosive
proliferation of linelike defects of the translational type, called dislocations (1:%?), They
are characterized by the so-called Burger’s vectors b{*) which are conserved quantities
along each line and across branch points of lines just as though b'® were triplets of
currents flowing along the lines.

In the absence of elastic long-range forces the dislocations may be described as
interacting random flight chains with a free energy

(18) =3 [@0(80,(x) 89,(%) + 120} 0a@)} + Vipa ol1,

where the interaction conserves the Burger’s vectors and is, therefore, invariant under
phase changes

(19) Pu(x) = exp [—ivb g (x) .

We can now incorporate those nonlinear aspects of elasticity which are governed by
dislocation lines by simply adding F and F,, and replacing 8,9, by the covariant form
(8,— (#/T)b!¥ A} pa(x) making (19) a local invariance. In this way we have approxi-
mated the non-Abelian gauge theory with large fluctuations by an Abelian one with
harmonic fluctuations plus a Higgs field. In order to be sure that this describes the
correct physics we may calculate the energy between two dislocation lines via Al
exchange and find the well-known expression derived many years ago by Brix (%10},

The energy (18) can be simplified by noting that dislocation lines with larger
Burger’s vectors can be generated as bound states or resonances of a few fundamental
ones (usually three) such that the sum in (I8) may be restricted to the fundamental
Burger’s vectors only. The discussion of the phase transition solid-liquid follows the
same paftern as in the Ginzburg-Landau theory of superconductivity. For T > T,
the disorder parameter g4(x) has a nonvanishing expectation value, the sea-gull term
|6 4ig 4| makes the elastic field massive which thus ceases to propagate in the liguid
state. The only difference with respect to the superconductor is the following: While
there the phase oscillations (« zero sound ») all disappear, being equivalent to a gauge
transformation, it is not so here for all the three « hot sound » waves. Their longitudinal
combination survives, since it cannot be gauged away by the purely transversal gauge
funetions A*(x). In fact, longitudinal « hot sound » describes the physical sound waves
in the liquid state (°),

2) Another example is superfluid He IT where the energy is

(20) F, zfd%%vf ,

(*?*) H. RLEINERT: Phys. Leil, B (In press).
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which is the analogue of the linear elastic energy (13). Here g, is the superfluid den-
sity and v, the superfluid velocity which satisfies dv, = 0 (incompressibility) every-
where such that we may represent v, in terms of a gauge field

(21) v, = dxAd.
In a proper nonlinear extension of (20) there are vortex lines, around which
§dm v,=nhfm=K,

with n =1, 2,...; h/m ~ 10-3 cm?/s. These may be considered as large fluctuations
in », and may be incorporated into the linearized theory by adding the Higgs field
energy (F,[e,, o1+ Vg, 99;])|B%—>(8~(imx,, A)gn- As in the crystal lines with higher »
arise as resonances of the fundamental field ¢, such that it is sufficient to include
explicitly only this.

Again it may be verified that this coupling reproduces the correct forces between
vortex lines (which are the same as the magnetic forces between current loops, apart
from an opposite sign). As before, the superfluid-normal transition can be described
as a Higgs effect with the disorder fields taking a nonzero expectation value at some
temperature T, (%:19).

A similar discussion can be given for nematic and smectic liquid crystals, pion
condensation (1¥) and magnetic superconductors () where transitions are caused by
defect loops (13).

Thus it appears convincing that local Higgs fields may just be an alternative way
of describing line-like defects inherent in the nonlinear aspects of pure gauge fields,
If all types of relevant defects are included explicitly, the remaining field fluctuations
may become harmonic and simplify so much that physical phenomena can be studied
by hand rather than by imitating immense multitudes of fluctuation patterns one by
one in Monte Carlo computer calculations.

The implications of these considerations for QCD will be presented elsewhere.

(1%) H. KLEINERT: Letf. Nuovo Cimento 34, 103 (1982).
(1) H. KLEINERT: Phys. Letf. A (in press).



