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For a simple lattice model of defect melting we calculate the transition temperature in terms of the elastic constants,
using the technique of duality transformations. The Lindemann parameter comes out to be L ~ 100 for strong steric repul-
sion g between the dislocation lines and can be increased by weakening this parameter (experimentally L ~ 120—-200). Thus
g must be small. This also ensures the first-order nature of the transition, as recently shown by the author.

Duality transformations permit a direct change from an order to a disorder description of a physical system
[1]. In this note we use this technique for a simple lattice model of defect melting and calculate the transition
temperature.

Consider an ideal crystal whose linear elasticity is described by an energy
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where u, A are Lamé’s constants, v = % M(A + ) is Poisson’s ratio, 0y is the stress and u; are the displacements of
the atoms. We shall assume the perfect crystal at zero temperature to consist of a periodic array of potential wells
located at x = = 13=1 nya; = (ny, ny,n3)a each being occupied by one atom. As the temperature is increased, the
atoms are allowed to move across the barriers to any other well without being disturbed by the presence of the
atom lying there. In nature, there will be repulsion and the atom remains at an interstitial place. This detail will
be neglected at first and included heuristically at a later stage.

Thus we shall study the energy

aZ) (Fu(Viu; + Viu; — 2n5a)? + 3 NViu; — na)?] 3)

Here Vl-u]- =u; (x+a;)— u]-(x) are the lattice derivatives, the variables u; cover the unit cell of the crystal, |u;]
< a/2, and the integers ny = 0,+1, %2, ... account for the jumps across the barriers. Obviously, for smooth config-
urations, (3) coincides with (1).

The partition function

al2 du (x)
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can be transformed via an auxiliary triplet of symmetric tensor fields 0y to the form
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where we have abbreviated the dimensionless factor 72 T/ua3 by 7. Executing the sum over n; (x) via Poisson’s
formula, Z, ei271« = 3, §(a — 1), the integral over doj; reduces to a sum oveg mtege}g values o =0,%1,%2,,

After this the integral over u; enforces G to be divergenceless on the lattice V;o 0y 2 =V, i0i = =0. Here we have per-
formed the lattice analogue of partial mtegratlon under which Z, (V;¥)p = Z, ¥V, with v ()= o(x) —o(x —a;)
=Vio(x —a;). We may introduce a symmetric integer tensor f1e1d hn jsuch that

(_]i]'(X)= eiklejmndV hln(x —da —an) , (6)
ie., U is a double lattice curl of A,,;. There is a freedom under arbitrary local lattice gauge transformations
hnl >h nit vn zl + vl%’n : (7

In terms of &1, ;, Z takes the form [2]

nil>
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Ln hp(x)=0,21,... x

where D_ln 1y is the difference operator

By, pu = V99,9, (p<2,2> B :pL) . ©)
InI'n'

The expressions P(S 2) stand for the lattice versions of the spin s helicity A projection matrices with PL projecting

into the mixed state corresponding to (1/3)1/2{2, 0) — (2/3)1/2{0, 0. The form (9) permits an immediate inver-

sion such that the correlation function of ﬁln becomes

1+v

Yew) (10)
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where g2¢2 =2 23 1 (1 - cos k;a) and PG M (k) arise from the familiar rotational forms by replacing klv by
[exp(ikya) — 1]/1aK =kp/x and kl by [1 — exp(—ika)}/iak = KI/K
The awkward restriction to integer 7 1n can be lifted by one more use of Poisson’s formula by which Z becomes

z=11 f dhln(x)\/T/NS(Vlhln)exp(—fz hy,D; ,,n.h,.n,) 2 as.ﬁ..oexp(zniZ} ﬁijh,-j). )
x,ln x ’ 75j(%) i x

Here 7y, is a symmetric integer tensor, It is recognized as the lattice version of the incompatibility tensor, well-
known in the classical theory of elasticity [3] *1. This may be decomposed into dislocation and disclination den-

sities &;,, and 6,], respectively, via
Ty = 0y —ivm(emﬂ&ﬂ (o0 + €y )X) (12)

* *
which is symmetric and satisfies vi"?i]’ =0, due to the relations V;&;, enuﬁl], V 0 = (. From now on we shall

1 Integrating 4, out gives
Z= Z 6VT& o exp(—2n? 2 Atn D, I'n' #'n')
where D_l can be taken as
{FGnnsir + s wn + /(1 = )18 01851} Eeik'xa‘4,(‘4 ’

due to V,n,] 0. For a defect line along L, 6, bibj(L), ajpy = 8 (LY [by + €jyn 2 (x ~ x%),,] where b, © are Burgers and
Frank vectors, respectively, This generalizes ﬁhn ’s formula to © # 0.
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consider only dislocations because of their lower elastic energy. Then the last factor in (11) becomes

& . -
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where we introduced the auxil%ary field A;, (x) = €,V (). In terms of this, the elastic exponent is
exp(—1 2y A, Dy Ayryy) With
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ini'n
such that Ain has the correlation function
=1 cikex,-2,-2( p(22) 4 p(2,-2) 4 1L 1Y (1,0)) 15
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In order to calculate the partition function we observe that it is equivalent to grand canonical ensemble of closed,
random loops (&;),, coupled to an external field (4;), (with V, 4, =0, 4;; = 0), one vector foreveryn =1, 2, 3.
Consider a random walk of » steps and let P(x, y, 1) be the probability of arriving at x after starting from y. For
D dimensions, P satisfies

P(x,y,n)= IEP(x +Ly,n—1)2D  or{V, — LD-1V,¥)P(x,y,n)=0.

With the initial condition P(x,y, 0) =6 this is solved by

x,)?

P,y m)= 5y 2 ek =T, T4 = —log(1 - a2k2/2D), (16)

where NV is the number of sites on the lattice. The total number of different closed loop configurations is there-

fore N(2D)'P(x, x, n)/n. Allowing for a chemical potential € per link, the one loop partition function is

7= 0 lean=3 Ef dge=$n = _log(e® — 1), (17)
n=0 k B n=0 k bt

where we have abbreviated a = T(k) + ¢/T — log 2.D. If this is exponentiated we obtain the partition function of

a grand canonical ensemble of closed loops. For T'S T = e/log 2D, we use the approximation Z ~ exp(— Zy
log a(a2K 2)) which can also be written as a path integral over a fluctuating defect field:

z= [Dongtes(~ Dot wa@vpew)) .

Here we see that for T > T, the fluctuations destabilize due to the high configurational entropy of the disloca-
tion lines such that there is a phase transition order—>disorder. Actually, when summing up the loop configura-
tions we have committed some counting errors. Random walks which backtrack or pass through a point twice
should be omitted. This will be taken into account phenomenologically by adding, in the exponent of (20), a
steric repulsion —g(¢*¢)2. Leaving the size of g adjustable we may simulate the atomic repulsions which forces
the defected atoms into interstitial places. Such a quartic term is necessary in order that the system restabilizes,
above T, at some new value p, # 0. Let us now calculate the temperature at which the transition takes place.
For this we must include the elastic forces. This can be done simply via the minimal gauge invariant replacement
[2], standard in electrodynamics,

* *
:ZZ wZa(VlVl)¢n —>§ ¢;a(DlD1)¢n , Dpo(x) = p(x +ay)exp[-2nid;(x +a))] — p(x),
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Dyp(e) = p(x) — (x — apexp[2rid;(x —ay)]

and we have introduced the index n = 1, 2, 3 for the three different dislocation lines. It was shown by us in ref.
[2] that this coupling leads to the correct longrange forces between dislocation lines. Consider the induced ef-
fective potential for the g, fields. Neglecting 6¢,, fluctuations we can use a gauge ¢, = real and integrate out the
A;,, fields. This leads to a fluctuation determinant

)

The exponent can be split into P(2:2), P(2"2) P(l’o) parts and becomes

(const——Eloga2 2)—ﬁ( = ) E[Nog( 2L E

D 3D n
2)J
where the prime records the fact that the ¢n¢n terms have been removed from the Taylor series of the logarithms

and v(0) =2, a~ 242 ~ 0.253 denotes the lattice Coulomb potential [4]. The first term gives an entropy of
elastic fluctuations, the second a self-energy of the dislocation loops. This remormalizes

[T gz (1+31 )U(O)] ’

Actually, there was no € in the beginning such that the chemical potential is entirely due to elasticity and this
puts us in a position to determine T .. At the transition we have 7, = w2 {1 + % v/(1 — v)]u(0)/D log 2D. Compar-
ison with experiment is most convenient in terms of the Lindemann parameter L which is defined as [5] L
=22.8/ua’/ Thep=228X TT/\/‘T—C 22 100. This value is somewhat smaller than what is found for most materials
(L ~ 120-200).

Therefore we turn to the third fluctuation terms in (21) neglected so far. Since the integral converges rapidly
for small k, we can replace it by the continuum limit ¢ - 0 and find a term (Z,, |y, 12)3/2 Such a cubic term is
capable of destabilizing the ¢, = 0 fluctuations for T’ .;; < T thereby lowering the transition temperature and
raising L2. Moreover, the phase transition, which up to now was of second order, becomes first order just as ob-
served expreimentally [2]. The precise position of T .| depends on the size of the steric repulsion %, ' &np’

X lg, lzl¢n |2 between defect lines [2]. The coupling g has to be very small if T, lies substantially below T.
The consequence is a large latent heat and the absence of precritical fluctuations which justifies the assumptlon
used in arriving at (21), a posteriori. Under these circumstances, the ¢ field theory corresponds to a type I su-

perconductor [2,6,7].

const. exp[ 2 tr log( in,i'n' (€) + 6 0, E n
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