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We use the XY model to derive a disorder gauge field theory of the Ginzburg—Landau type II and calculate the transi-
tion temperature. As a side result we find the complete phase transition line of a lattice superconductor t — 3 + 0.253 €2
= 0, where f is the temperature and e the electric charge, in good agreement with recent Monte Carlo numbers.

In many physical systems, order—disorder phase transitions are caused by line-like defects. Recently it was
pointed out that their grand-canonical statistical mechanics can conveniently be described by a gauge field theory
of the Ginzburg—Landau type [1] in which the complex field accounts for the defect loops and the gauge field for
their long-range interactions. For T > T the disorder field acquires a non-zero expectation, signalizing the prolifer-
ation of defects which cause the gauge fields to lose their long-range propagation, in analogy with the Meissner—
Higgs effect of superconductivity.

The simplest example is superfluid 4He where the disorder is caused by vortex loops. These have long-range
“elastic” interactions, due to their coupling to sound waves, with the forces being the same as the magnetic Biot—
Savart forces between current loops (apart from a minus sign) [2]. The proliferation of vortices leads to the loss
of superfluidity. In solids, the defects are dislocation lines and these cause the phase transitions of melting [1]*".

The construction of an approximate disorder field theory is quite straightforward [1]. There are three unknown
parameters, the core energy, the short-range steric repulsion between defect lines, which in principle can be deter-
mined experimentally, and the entropy per link which for a pure random line is log 2D where D is the spatial di-
mension [1]. In the previous qualitative development, the first two parameters were left open for experimental
determination and the entropy was approximated by In 2D, for simplicity.

It would be useful to find a way of determining the accurate values of these parameters a priori. This is what
we shall do in this note for the vortex lines of superfluid 4He close to the critical temperature.

It is well known that the critical properties of superfluid 4He can well be described by the so-called XY model
on a simple, cubic lattice whose partition function reads

Zyy(T) = El [ dg—(:) exp(—%le; [cos V,0(x) — 1]), )

where x are the lattice points, 7 the basic lattice vectors, and V;8(x) = 6(x + ) — 6(x) the lattice derivatives. In the
Villain approximation, good for T< 1, this can be written as

40(x)

1
21 {n; 0} exp (* 5T ;Zl; [V;6(x) — 27Tn,-(x)]2) , o

Zyyy(T)=eNT I1 f
x —

*1 For the crucial role if disclinations in making melting a first order transition, see H. Kleinert, Lett. Nuovo Cimento (in press).
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where V is the total number of lattice sites. Introducing an auxiliary field via a quadratic completion, this becomes

[4]
46 db;(x)
Zyyy(T)=eMT n f (X) f V21T {nz<x)}

Summing over all n; (x) constrains the integrals over b; to integers whereupon integration over df (x) enforces
%,V bi(x) = 0, where Vb (x) = b;(x) — b;(x — §) is the dual lattice derivative. Thus we arrive at the dual repre-
sentation of the XY partition function

exp (_% ZDI b(x) +i :L? b; [V;0(x) — 2””i(x)]) : ©)

T
Loy =TT N T by vinenn o (-1Z b)) (4)
14 B

Due to the vanishing lattice divergence, b; may be considered as an integer valued magnetic field. Correspondingly,
we introduce an integer vector potential g; and write
bf = (V X a)l- = 6i]-kV/-*ak(x - k) y (5)

an expression which is invariant under gauge transformations a; > @; + V; A with arbitrary integer functions A(x).
With this, (4) takes the alternative form [3,4]

= dA4;(x) T
— —NIT Rl tid _L 2)zA4
ZXYV(T) ¢ H ;[ \/27( exXp ( 5 xZ; (v XA)i ) Zloops > (©)
with
Zﬁl)ops {12(2)} E,V?l,'(x),O exp(—2m’ xZ,B li(x)Ai(x)) > (7)

where the sum over integers /;(x) ensures that only integer values of 4;(x) contribute to the integrals { d4;(x).
The condition Z; Vi*ll-(x) = 0 is required by gauge invariance. Certainly, the integrations over the 4;(y) fields have
to be done after some gauge fixing. Since the XY model is identified with superfluid #He, the sum over [;(x) con-
figuration with X; V;li (x) = 0 accounts for the random set of non-backtracking vortex loops of unit vorticity [1].
The 4, field generates the long-range Biot—Savart forces between these [2}.

It was observed by Peskin [4] that for 4; = 0 this sum has the same form as that over integer magnetic fields in
(4) which in turn may be considered as the dual version of an auxiliary XY model in the limit of zero auxiliary
temperature, which we call ¢ to distinguish it from the proper temperature T, i.e.

0 = * = 1i N/2
Zhaps = (23, Sxiviten = Im CalON2 2y y(). ®

Going back to the form (3) but with b;, T, 0 replaced by /;, ¢, v, to stress the auxiliary nature of this XY model,
the sum becomes

0 g (27 d7(x) dZ;(x) SN o )
Zloops th{r(; ( t ) f f w 27t {1 (x)} (_ 2 le/ i le; Wiy = 2mm) )

In this form it is trivial to add the minimal coupling to the vector field 4; which gives

. (2n dy(x) dl;(x) t 2.
zA —llm(ﬁ) oL 2012 +1 20 0L(V.y - 2m4, — 21m)) 9
toops = "o \ 7, f f 27t {n,(x)} 2xi" x,i (Viy ! ) ©)

or, after integrating out the J; fields,
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N2 T
A 2m dyx) 3 B ED DIV VD SR .2)
ZIOOPS }T()) ( t ) l;I 2n {n;0)} P 2t x,i ( i NAI nnl) ’ (19)

This may be looked at as the Villain approximation to an XY model in an external vector potential (which for
¢t = 0 is actually exact).

z4 = 1lim (¢ 2myN2 1 Y (LT eos(Tyy - 2n4) — 1] | an
O%PS 120 x 7 2m txi ! !
Thus
2t N[2 dA4;(x) '
ZXYV(T)— hm (et efT) 1—1[ ~\72—_T[— exp (~ %xz; (Vv XA)I-Z)
X I;I f (%Qexp(}l—g? [cos(V;7 — ed;) - 1]) , (12)

with ¢ = 27/»/T, where we have absorbed /T into the A field. This is Peskin’s result: The XY model corresponds
to a lattice superconductor with # - 0 and charge e = 2a//T.

Let us now use this formula to derive the disorder field theory of vortex loops. For this we neglect, for a
moment, the gauge field and rewrite

d D

I J i) exp - 25 cos V)11 f-lz(ﬂi)exp[TES’“(l *3p 2 (%Y, ) ] (13)

X, X X
where S(x) = elY™®), The vector potential can be included by simply replacing V;, V,-* by the covariant derivatives
D;S(x)=S(x +i) exp[—ied;(x)] —S&x), D;Sx)=S(x)--explied(x —)]S(x —1i), (14)
apart from the 4 field energy. Using D; — D;‘ ED;‘DI., the exponent takes the form
DZ}S (1+ DD)S (15)
where S, is the real two-vector
S,(x) = (cos Y(x),sinv(x)), a=1,2. (16)

The complex disorder field , may now be introduced by means of a quadratic completion in (13)

dy,d
Z{cl)ops_ thm (62t 27r/t)N/2 H f dy(x) ff ‘l’i ];D/i(x) ('4%) xE U"’gz +§ %Sa) , RE

with g, = (1 + Z; D;"Dl-)l/2 Y, Performing the y(x) integrals and inserting the result in (6) leads to

ZXYV(T)—hm (ezr T) fdA () fdwld%(x) p(‘%xzz(VXA)iz)

toe2r anD/t

X exp(~1% ? \1/3 + ? logIO(\/gp?)). (18)

This is the desired gauge theory of disorder. For t — 0, the field ¢ describes the vortex lines of the XY model, i.e.
those of superfluid 4He in the critical regime [1].
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If the phase transition is of second order we can approximate the energy close to the phase transition by a
Landau expansion

Fly, w1, AlT~ 25 (3ID ~ )92 + (/8D) DY + &Il +5(VX A)) . (19)
X

In the absence of magnetism, this has the mean field phase transition at

t=D. (20)

The magnetic field energy changes this as follows: Assuming Y =~ const and taking the gauge ¢ = real, the 4 field

can be integrated out and gives an additional “‘classical black-body” energy:

AF = ? log[1+(¢2/4DK?) [y 2] , (21)

where K2 = Z; 2(1 — cos k;). This results in an additional [y|2 term

(e2/4D) ( 2 1/1<2) P (22)
K

Thus we conclude that the lattice superconductor has a straight line of phase transition which satisfies

t=D+e2 27 1/K2. (23)
k

ForD=3,2, 1/K? = 0.253 and this line fits well the Monte Catlo data points of ref. [5]. The original XY model
corresponds to ¢ = 0 and we obtain a phase transition at eg =11.86 or T, = 3.3. This is only 10% larger than the
direct mean field result for the XY model T, = D = 3. Considering the fact that we have employed the Villain

approximation, the agreement is excellent. For D = 3, the energy (21) also has a cubic term
AF = —(e3/6m)(51w12)32 (24)

which suggests a first order phase transition at [6]
b1 le2 ? 1/K2 ~ [e8)(6m)2]/[&(12)3] . (25)

The right-hand side is <0.157 for €2 < eg. The Ginzburg criterium [7], on the other hand, says that fluctuations
in the size of the || field are large for all

|§z-1—§e22;) 1/K21<1. (26)

Thus the approximation || ~ const needed to calculate (24) is not trustworthy *? and the transition can remain
second order, which is confirmed by the Monte Carlo data. In fact, the Ginzburg theory has a K parameter [8]

K = mass |Y|/~/2 mass 4 = Dle , 27

which determines the range of the magnetic versus that of the || fluctuations in the Y # 0 phase. For e? < eg
this is K > 0.87 > 1//2 such that the Ginzburg—Landau expression (19) is of type II and is therefore expected to
maintain a second order phase transition in spite of the A field fluctuations.

Let us conclude this discussion by noting'that it is possible to incorporate a non-zero core energy per link,
of vortex lines and thus go beyond the XY model for superfluid 4He. All one has to do is identify

ECOTE’
exp(—31 i ll-z) with a Boltzmann factor exp[—(e . /™) Zx ; 12] which generates a positive ¢ in (19) and moves

2 Only the 112 term in (22) is, since it is merely the seagull diagram (Aiz(x)) Iy (x) |2, valid for arbitrary [y (x)(2.

89



Volume 93A, number 2 PHYSICS LETTERS 27 December 1982

the phase transition in (23) to lower e2, i.e. higher T [9] *2.
The author thanks T. Banks for an illuminating discussion.

3 This model is investigated further in ref. [9]. It leads to Ginzburg—Landau theorics with different X and specifies the value Ky
where the superconductive transition becomes first order.
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