Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Acta Pharmacologica Sinica
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. acta pharmacologica sinica
  3. review
  4. article
Molecular mechanism and regulation of autophagy
Download PDF
Download PDF
  • Review
  • Published: 01 December 2005

Molecular mechanism and regulation of autophagy

  • Ya-ping Yang1,
  • Zhong-qin Liang1,
  • Zhen-lun Gu1 &
  • …
  • Zheng-hong Qin1 

Acta Pharmacologica Sinica volume 26, pages 1421–1434 (2005)Cite this article

  • 6717 Accesses

  • 185 Citations

  • Metrics details

Abstract

Autophagy is a major cellular pathway for the degradation of long-lived proteins and cytoplasmic organelles in eukaryotic cells. A large number of intracellular/extracellular stimuli, including amino acid starvation and invasion of microorganisms, are able to induce the autophagic response in cells. The discovery of the ATG genes in yeast has greatly advanced our understanding of the molecular mechanisms participating in autophagy and the genes involved in regulating the autophagic pathway. Many yeast genes have mammalian homologs, suggesting that the basic machinery for autophagy has been evolutionarily conserved along the eukaryotic phylum. The regulation of autophagy is a very complex process. Many signaling pathways, including target of rapamycin (TOR) or mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase-I (PI3K-I)/PKB, GTPases, calcium and protein synthesis all play important roles in regulating autophagy. The molecular mechanisms and regulation of autophagy are discussed in this review.

Similar content being viewed by others

PKA compartmentalization links cAMP signaling and autophagy

Article Open access 19 March 2021

Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets

Article Open access 16 January 2023

Transcriptional regulation of autophagy and its implications in human disease

Article 12 April 2023

Article PDF

References

  1. Gronostajski RM, Pardee AB, Goldberg AL . The ATP dependence of the degradation of short- and long-lived proteins in growing fibroblasts. J Biol Chem 1985; 260: 3344–9.

    Article  CAS  PubMed  Google Scholar 

  2. Scott SV, Hefner-Gravink A, Morano KA, Noda T, Ohsumi Y, Klionsky DJ . Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc Natl Acad Sci USA 1996; 93: 12304–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shieh HL, Chiang HL . In vitro reconstitution of glucose-induced targeting of fructose-1,6-bisphosphatase into the vacuole of semiintact yeast cells. J Biol Chem 1998; 273: 3381–7.

    Article  CAS  PubMed  Google Scholar 

  4. Lockshin RA, Zakeri Z . Apoptosis, autophagy and more. Int J Biochem Cell Biol 2004; 36: 2405–19.

    Article  CAS  PubMed  Google Scholar 

  5. Bursch W, Ellinger A, Gerner C, Schulte-Hermann R . Autophagocytosis and programmed cell death. In: Klionsky DJ, editor. Autophagy. Georgetown, TX: Landes Bioscience; 2004. p 287–303.

    Google Scholar 

  6. Bergamini E, Cavallini G, Donati A, Gori Z . The anti-ageing effects of caloric restriction may involve stimulation of acroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomed Pharmacother 2003; 57: 203–8.

    Article  CAS  PubMed  Google Scholar 

  7. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B . Autophagy genes are essential for dauer development and life-span extension in C elegans. Science 2003; 301: 1387–91.

    Article  CAS  PubMed  Google Scholar 

  8. Bergamini E, Cavallini G, Donati A, Gori Z . The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases. Int J Biochem Cell Biol 2004; 36: 2392–404.

    Article  CAS  PubMed  Google Scholar 

  9. Shintani T, Klionsky DJ . Autophagy in health and disease: a double-edged sword. Science 2004; 306: 990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mizushima N, Ohsumi Y, Yoshimori T . Autophagosome formation in mammalian cells. Cell Struct Funct 2002; 27: 421–9.

    Article  PubMed  Google Scholar 

  11. Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell 2003; 5: 539–45.

    Article  CAS  PubMed  Google Scholar 

  12. Yoshimori T . Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 2004; 313: 453–8.

    Article  CAS  PubMed  Google Scholar 

  13. Wang CW, Klionsky DJ . Microautophagy. In: Klionsky, DJ, editor. Autophagy. Georgetown, TX: Landes Bioscience; 2004. p 107–14.

    Google Scholar 

  14. Majeski AE, Dice JF . Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 2004; 36: 2435–44.

    Article  CAS  PubMed  Google Scholar 

  15. Elmore SP, Qian T, Grissom SF, Lemasters JJ . The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 2001; 15: 2286–7.

    Article  CAS  PubMed  Google Scholar 

  16. Onodera J, Ohsumi YJ . Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae. J Biol Chem 2004; 279: 16071–6.

    Article  CAS  PubMed  Google Scholar 

  17. Dunn, WA Jr . Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 1990; 110: 1923–33.

    Article  PubMed  Google Scholar 

  18. Yamamoto A, Masaki R, Tashiro Y . Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. J Histochem Cytochem 1990; 38: 573–80.

    Article  CAS  PubMed  Google Scholar 

  19. Fengsrud M, Roos N, Berg T, Liou W, Slot JW, Seglen PO . Ultrastructural and immunocytochemical characterization of utophagic vacuoles in isolated hepatocytes: effects of vinblastine and asparagine on vacuole distributions. Exp Cell Res 1995; 221: 504–19.

    Article  CAS  PubMed  Google Scholar 

  20. Kim J, Huang WP, Klionsky DJ . Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol 2001; 152: 51–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001; 152: 657–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y . The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 2001; 20: 5971–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, et al. A protein conjugation system essential for autophagy. Nature 1998; 395: 395–8.

    Article  CAS  PubMed  Google Scholar 

  24. Tanida I, Tanida-Miyake E, Ueno T, Kominami E . The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 2001; 276: 1701–6.

    Article  CAS  PubMed  Google Scholar 

  25. Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi Y . Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 1999; 18: 5234–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mizushima N, Noda T, Ohsumi Y . Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 1999; 18: 3888–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 2003; 116: 1679–88.

    Article  CAS  PubMed  Google Scholar 

  28. Kuma A, Mizushima N, Ishihara N, Ohsumi Y . Formation of the approximately 350-kDa Apg12-Apg5Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 2002; 277: 18619–25.

    Article  CAS  PubMed  Google Scholar 

  29. George MD, Baba M, Scott SV, Mizushima N, Garrison BS, Ohsumi Y, et al. Apg5p functions in the sequestration step in the cytoplasm-to-vacuole targeting and macroautophagy pathways. Mol Biol Cell 2000; 11: 969–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 1999; 147: 435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 2000; 151: 263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A ubiquitin-like system mediates protein lipidation. Nature 2000; 408: 488–92.

    Article  CAS  PubMed  Google Scholar 

  33. Ichimura Y, Imamura Y, Emoto K, Umeda M, Noda T, Ohsumi Y . In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J Biol Chem 2004; 279: 40584–92.

    Article  CAS  PubMed  Google Scholar 

  34. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19: 5720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kabeya Y, Mizushima N, Yamamoto A, Ohsumi Y, Yoshimori T . LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 2004; 117: 2805–12.

    Article  CAS  PubMed  Google Scholar 

  36. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y . In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004; 15: 1101–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sagiv Y, Legesse-Miller A, Porat A, Elazar Z . GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J 2000; 19: 1494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW . GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature 1999; 397: 69–72.

    Article  CAS  PubMed  Google Scholar 

  39. Marino G, Uria JA, Puente XS, Quesada V, Bordallo J, Lopez-Otin, C . Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J Biol Chem 2003; 278: 3671–8.

    Article  CAS  PubMed  Google Scholar 

  40. Per ES, Daniel JK . Approaching the molecular mechanism of autophagy. Traffic 2001; 2: 524–31.

    Article  Google Scholar 

  41. Scott SV, Nice, DC 3rd, Nau, JJ, Weisman LS, Kamada Y, Keizer-Gunnink, I, et al. Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem 2000; 275: 25840–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kim J, Kamada Y, Stromhaug PE, Guan J, Hefner-Gravink A, Baba M, et al. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J Cell Biol 2001; 153: 381–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y . Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 2000; 150: 1507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Uetz P, Giot L, Cagney G, Mansfield TA, Knight JR, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000; 403: 623–7.

    Article  CAS  PubMed  Google Scholar 

  45. Nice DC, Sato TK, Stromhaug PE, Emr SD, Klionsky DJ . Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem 2002; 277: 30198–207.

    Article  CAS  PubMed  Google Scholar 

  46. Abeliovich H, Zhang C, Dunn WA Jr, Shokat KM, Klionsky DJ . Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy. Mol Biol Cell 2003; 14: 477–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Okazaki N, Yan J, Yuasa S, Ueno T, Kominami E, Masuho Y, et al. Interaction of the Unc-51-like kinase and microtubule associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Brain Res Mol Brain Res 2000; 85: 1–12.

    Article  CAS  PubMed  Google Scholar 

  48. Seglen PO, Gordon PB . 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA 1982; 79: 1889–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P . Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT–29 cells. J Biol Chem 2000; 275: 992–8.

    Article  CAS  PubMed  Google Scholar 

  50. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ . The phosphat idylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 1997; 243: 240–6.

    Article  CAS  PubMed  Google Scholar 

  51. Herman PK, Emr SD . Characterization of VPS34, a gene equired for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10: 6742–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kihara A, Noda T, Ishihara N, Ohsumi Y . Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 2001; 152: 519–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 2001; 276: 35243–6.

    Article  CAS  PubMed  Google Scholar 

  54. Tassa A, Roux MP, Attaix D, Bechet DM . Class III phosphoinositide 3-kinase-Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J. 2003; 376: 577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wurmser AE, Emr SD . Novel PtdIns(3)P-binding protein Etf1 functions as an effector of the Vps34 PtdIns 3-kinase in autophagy. J Cell Biol 2002; 158: 761–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672–6.

    Article  CAS  PubMed  Google Scholar 

  57. Saeki K, Yuo A, Okuma E, Yazaki Y, Susin SA, Kroemer G, et al. Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ 2000; 7: 1263–9.

    Article  CAS  PubMed  Google Scholar 

  58. Noda T, Kim J, Huang WP, Baba M, Tokunaga C, Ohsumi Y, et al. Apg9/Cvt7 is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 2000; 148: 465–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim J, Huang WP, Stromhaug PE, Klionsky DJ . Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J Biol Chem 2002 ; 277 : 763 – 73 .

    Article  CAS  Google Scholar 

  60. Noda T, Kim J, Huang WP, Baba M, Tokunaga C, Ohsumi Y, et al. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 2000; 148: 465–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hagal A, Daniel JK . Autophagy in yeast: Mechanistic insights and physiological function. Microbiol Mol Biol Rev 2001; 65: 463–79.

    Article  Google Scholar 

  62. Shintani T, Suzuki K, Kamada Y, Noda T, Ohsumi Y . Apg2p functions in autophagosome formation on the perivacuolar structure. J Biol Chem 2001; 276: 30452–60.

    Article  CAS  PubMed  Google Scholar 

  63. Guan J, Stromhaug PE, George MD, Habibzadegah-Tari P, Bevan A, Dunn, WA Jr, et al. Cvt18/Gsa12 is required for cytoplasm-tovacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol Biol Cell 2001; 12: 3821–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohsumi Y, Mizushima N . Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol 2004; 15: 231–6.

    Article  CAS  PubMed  Google Scholar 

  65. Nice DC, Sato TK, Stromhaug PE, Emr SD, Klionsky DJ . Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the preautophagosomal structure is required for selective autophagy. J Biol Chem 2002; 277: 30198–207.

    Article  CAS  PubMed  Google Scholar 

  66. Stromhaug PE, Reggiori F, Guan J, Wang CW, Klionsky DJ . Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 2004; 15: 3553–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shintani T, Klionsky DJ . Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem 2004; 279: 29889–94.

    Article  CAS  PubMed  Google Scholar 

  68. Wang CW, Stromhaug PE, Kauffman EJ, Weisman LS, Klionsky DJ . Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol 2003; 163: 973–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mesa R, Salomon C, Roggero M, Stahl PD, Mayorga LS . Rab22a affects the morphology and function of the endocytic pathway. J Cell Sci 2001; 114: 4041–9.

    Article  CAS  PubMed  Google Scholar 

  70. Munafo DB, Colombo MI . Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic 2002; 3: 472–82.

    Article  CAS  PubMed  Google Scholar 

  71. Nara A, Mizushima N, Yamamoto A, Kabeya Y, Ohsumi Y, Yoshimori T . SKD1 AAA ATPase-dependent endosomal transport is involved in autolysosome formation. Cell Struct Funct 2002; 27: 29–37.

    Article  CAS  PubMed  Google Scholar 

  72. Gutierrez MG, Munafo DB, Beron W, Colombo MI . Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 2004; 117: 2687–97.

    Article  CAS  PubMed  Google Scholar 

  73. Blankson H, Holen I, Seglen PO . Disruption of the cytokeratin cytoskeleton and inhibition of hepatocytic autophagy by okadaic acid. Exp Cell Res 1995; 218: 522–30.

    Article  CAS  PubMed  Google Scholar 

  74. Bursch W, Hochegger K, Torok L, Marian B, Ellinger A, Hermann RS . Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Sci 2000; 113: 1189–98.

    Article  CAS  PubMed  Google Scholar 

  75. Nakamura N, Matsuura A, Wada Y, Ohsumi Y . Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. J Biochem 1997; 121: 338–44.

    Article  CAS  PubMed  Google Scholar 

  76. Teter SA, Eggerton KP, Scott SV, Kim J, Fischer AM, Klionsky DJ . Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem 2001; 276: 2083–7.

    Article  CAS  PubMed  Google Scholar 

  77. Suriapranata I, Epple UD, Bernreuther D, Bredschneider M, Sovarasteanu K, Thumm M . The breakdown of autophagic vesicles inside the vacuole depends on Aut4p. J Cell Sci 2000; 113: 4025–33.

    Article  CAS  PubMed  Google Scholar 

  78. Agarraberes FA, Dice JF . A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 2001; 114: 2491–9.

    Article  CAS  PubMed  Google Scholar 

  79. Salvador N, Aguado C, Horst M, Knecht E . Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 2000; 275: 27447–56.

    Article  CAS  PubMed  Google Scholar 

  80. Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, et al. Accumulation of autophagic vacuoles and cardiomyopathy in Lamp-2-deficient mice. Nature 2000; 406: 902–6.

    Article  CAS  PubMed  Google Scholar 

  81. Cuervo AM, Mann L, Bonten EJ, d'Azzo A, Dice JF . Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J 2003; 22: 47–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cardenas ME, Cutler NS, Lorenz MC, Di Como, CJ, Heitman J . The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 1999; 13: 3271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Levine B, Klionsky DJ . Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6: 463–77.

    Article  CAS  PubMed  Google Scholar 

  84. Jiang Y, Broach JR . Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J 1999; 18: 2782–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rohde J, Heitman J, Cardenas ME . The TOR kinases link nutrient sensing to cell growth. J Biol Chem 2001; 276: 9583–6.

    Article  CAS  PubMed  Google Scholar 

  86. Beck T, Hall MN . The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 1999; 402: 689–92.

    Article  CAS  PubMed  Google Scholar 

  87. Huang WP, Scott SV, Kim J, Klionsky DJ . The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 2000; 275: 5845–51.

    Article  CAS  PubMed  Google Scholar 

  88. Chan TF, Bertram PG, Ai W, Zheng XF . Regulation of APG14 expression by the GATA-type transcription factor Gln3p. J Biol Chem 2001; 276: 6463–7.

    Article  CAS  PubMed  Google Scholar 

  89. Fingar DC, Salama S, Tsou C, Harlow E, Blenis J . Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 2002; 16: 1472–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Scott RC, Schuldiner O, Neufeld TP . Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 2004; 7: 167–78.

    Article  CAS  PubMed  Google Scholar 

  91. Blommaart EF, Luiken JJ, Meijer AJ . Autophagic proteolysis: control and specificity. Histochem J 1997; 29: 365–85.

    Article  CAS  PubMed  Google Scholar 

  92. Klionsky DJ . Regulated self-cannibalism. Nature 2004; 431: 31–2.

    Article  CAS  PubMed  Google Scholar 

  93. Ogier-Denis E, Codogno P . Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 2003; 1603: 113–28.

    CAS  PubMed  Google Scholar 

  94. Beugnet A, Tee AR, Taylor PM, Proud CG . Regulation of targets of mTOR (mammalian target of rapamycin) signaling by intracellular amino acid availability. Biochem J 2003; 372: 555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van Sluijters DA, Dubbelhuis PF, Blommaart EF, Meijer AJ . Amino-acid-dependent signal transduction. Biochem J 2000; 351: 545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Luiken JJ, Blommaart EF, Boon L, van Woerkom GM, Meijer AJ . Cell swelling and the control of autophagic proteolysis in hepatocytes: involvement of phosphorylation of ribosomal protein S6? Biochem Soc Trans 1994; 22: 508–11.

    Article  CAS  PubMed  Google Scholar 

  97. Blommaart EF, Luiken JJ, Blommaart PJ, Vanwoerkom GM, Meijer AJ . Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 1995; 270: 2320–6.

    Article  CAS  PubMed  Google Scholar 

  98. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J . Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF–4E BP1 through a common effector mechanism. J Biol Chem 1998; 273: 14484–94.

    Article  CAS  PubMed  Google Scholar 

  99. Xu G, Marshall CA, Lin TA, Kwon G, Munivenkatappa RB, Hill JR, et al. Insulin mediates glucose-stimulated hosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation. J Biol Chem 1998; 273: 4485–91.

    Article  CAS  PubMed  Google Scholar 

  100. McDaniel ML, Marshall CA, Pappan KL, Kwon G . Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells. Diabetes 2002; 51: 2877–85.

    Article  CAS  PubMed  Google Scholar 

  101. Meijer AJ, Dubbelhuis PF . Amino acid signalling and the integration of metabolism. Biochem Biophys Res Commun 2004; 313: 397–403.

    Article  CAS  PubMed  Google Scholar 

  102. Pattingre S, Bauvy C, Codogno P . Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem 2003; 278: 16667–74.

    Article  CAS  PubMed  Google Scholar 

  103. Plomp PJ, Gordon PB, Meijer AJ, Hoyvik H, Seglen PO . Energy dependence of different steps in the autophagic-lysosomal pathway. J Biol Chem 1989; 264: 6699–704.

    Article  CAS  PubMed  Google Scholar 

  104. Hardie DG, Carling D, Carlson M . The AMP-ctivated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 1998; 67: 821–55.

    Article  CAS  PubMed  Google Scholar 

  105. Samari HR, Seglen PO . Inhibition of hepatocytic autophagy by adenosine, aminoimidazole-4-carboxamide riboside, and N6-mercaptopurine riboside. Evidence for involvement of AMP-activated protein kinase. J Biol Chem 1998; 273: 23758–63.

    Article  CAS  PubMed  Google Scholar 

  106. Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, et al. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 2003; 8: 65–79.

    Article  CAS  PubMed  Google Scholar 

  107. Wilson WA, Mahrenholz AM, Roach PJ . Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol 2001; 21: 5742–52.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Brazil DP, Hemmings BA . Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 2001; 26: 657–64.

    Article  CAS  PubMed  Google Scholar 

  109. Vanhaesebroeck B, Alessi DR . The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 2000; 346: 561–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gao X, Zhang Y, Arrazola P, Hino O, Kobayashi T, Yeung RS, et al. Tsc tumour suppressor proteins antagonize amino-acid- TOR signalling. Nat Cell Biol 2002; 4: 699–704.

    Article  CAS  PubMed  Google Scholar 

  111. Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003; 11: 1457–66.

    Article  CAS  PubMed  Google Scholar 

  112. Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T . Beclinphosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2001; 2: 330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liang XH, Yu J, Brown K, Levine B . Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. J Cancer Res 2002; 61: 3443–9.

    Google Scholar 

  114. Ogier-Denis E, Couvineau A, Maoret JJ, Houri JJ, Bauvy C, De Stefanis D, et al. A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29. J Biol Chem 1995; 270: 13–6.

    Article  CAS  PubMed  Google Scholar 

  115. Pattingre S, Petiot A, Codogno P . Analyses of G-alpha-interacting protein and activator of G-protein-signaling-3 functions in macroautophagy. Methods Enzymol 2004; 390: 17–31.

    Article  CAS  PubMed  Google Scholar 

  116. Ogier-Denis E, Pattingre S, El Benna, J, Codogno P . Erk1/2-dependent phosphorylation of G alpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem 2000; 275: 39090–5.

    Article  CAS  PubMed  Google Scholar 

  117. Bernard ML, Peterson YK, Chung P, Jourdan J, Lanier SM . Selective interaction of AGS3 with G-proteins and the influence of AGS3 on the activation state of G-proteins. J Biol Chem 2001; 276: 1585–93.

    Article  CAS  PubMed  Google Scholar 

  118. Pattingre S, De Vries L, Bauvy C, Chantret I, Cluzeaud F, Ogier-Denis E, et al. The G-protein regulator AGS3 controls an early event during macroautophagy in human intestinal HT-29 cells. J Biol Chem 2003; 278: 20995–1002.

    Article  CAS  PubMed  Google Scholar 

  119. Zerial M, McBride H . Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2: 107–17.

    Article  CAS  PubMed  Google Scholar 

  120. Gordon PB, Holen I, Fosse M, Rotnes JS, Seglen PO . Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem 1993; 268: 26107–12.

    Article  CAS  PubMed  Google Scholar 

  121. Kalamidas SA, Kotoulas OB, Hann AC . Studies on glycogen autophagy: effects of phorbol myristate acetate, ionophore A23187, or hentolamine. Microsc Res Tech 2002; 57: 507–11.

    Article  CAS  PubMed  Google Scholar 

  122. Tallóczy Z, Jiang W, Virgin-IV HW, Leib DA, Scheuner D, Kaufman RJ, et al. Regulation of starvation- and virus-induced autophagy by the eIF2αkinase signaling pathway. Proc Natl Acad Sci USA 2002; 99: 190–5.

    Article  PubMed  CAS  Google Scholar 

  123. Abeliovich H, Dunn WA Jr, Kim J, Klionsky DJ . Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol 2000; 151: 1025–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Petiot A, Pattingre S, Arico S, Meley D, Codogno P . Diversity of signaling control of macroautophagy in mammalian cells. Cell Struct Funct 2002; 27: 431–41.

    Article  PubMed  Google Scholar 

  125. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112: 1809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Komatsu M, Waguri S, Ueno T, Iwata J, et Murata, S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 2005; 169: 425–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Qin ZH, Wang Y, Kegel KB, Kazantsev A, Apostol BL, Thompson LM, et al. Autophagy regulates processing amino terminus huntingtin fragments. Hum Mol Gen 2003; 12: 3231–44.

    Article  CAS  PubMed  Google Scholar 

  128. Wang Y, Gu ZL, Cao Y, Liang ZQ, Rong H, Bennett MC, et al. Lysosomal enzyme cathepsin B is involved in kainic acidinduced excitotoxicity in rat striatum. Brain Res 2005; 1039: 203–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Pharmacology, Soochow University School of Medicine, Suzhou, 215007, China

    Ya-ping Yang, Zhong-qin Liang, Zhen-lun Gu & Zheng-hong Qin

Authors
  1. Ya-ping Yang
    View author publications

    Search author on:PubMed Google Scholar

  2. Zhong-qin Liang
    View author publications

    Search author on:PubMed Google Scholar

  3. Zhen-lun Gu
    View author publications

    Search author on:PubMed Google Scholar

  4. Zheng-hong Qin
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Zheng-hong Qin.

Additional information

Supported by the National Natural Science Foundation of China (No 3037506).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Yp., Liang, Zq., Gu, Zl. et al. Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin 26, 1421–1434 (2005). https://doi.org/10.1111/j.1745-7254.2005.00235.x

Download citation

  • Received: 30 June 2005

  • Accepted: 26 August 2005

  • Issue Date: 01 December 2005

  • DOI: https://doi.org/10.1111/j.1745-7254.2005.00235.x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • autophagy
  • phosphatidylinositol 3-kinase
  • Atg protein
  • mTOR protein
  • protein degradation

This article is cited by

  • Cryptosporidium parvum regulates HCT-8 cell autophagy to facilitate survival via inhibiting miR-26a and promoting miR-30a expression

    • Heng Jiang
    • Xu Zhang
    • Jianhua Li

    Parasites & Vectors (2022)

  • New insights on the role of autophagy in the pathogenesis and treatment of melanoma

    • Marveh Rahmati
    • Shiva Ebrahim
    • Mohammad Amin Moosavi

    Molecular Biology Reports (2020)

  • Carboxyl-terminal modulator protein regulates Akt signaling during skeletal muscle atrophy in vitro and a mouse model of amyotrophic lateral sclerosis

    • Junmei Wang
    • Colin M. E. Fry
    • Chandler L. Walker

    Scientific Reports (2019)

  • Suberoylanilide Hydroxamic Acid Triggers Autophagy by Influencing the mTOR Pathway in the Spinal Dorsal Horn in a Rat Neuropathic Pain Model

    • Xiang-Lan Feng
    • Hong-Bo Deng
    • Xiao-Bo Feng

    Neurochemical Research (2019)

  • Small molecules re-establish neural cell fate of human fibroblasts via autophagy activation

    • Narawadee Rujanapun
    • Nudjanad Heebkaew
    • Parinya Noisa

    In Vitro Cellular & Developmental Biology - Animal (2019)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • About the Editors
  • Editorial Board
  • About the Partner
  • Open Access Fees and Funding
  • Contact
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Acta Pharmacologica Sinica (Acta Pharmacol Sin)

ISSN 1745-7254 (online)

ISSN 1671-4083 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited