Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug Synthesis by Genetically Engineered Microorganisms

Abstract

The interplay between chemical and biological approaches to drug discovery and development is increasing with the advent of combinatorial methods that accelerate the output of screening programs and the development of genetically modified microorganisms able to make new metabolites and larger amounts of known ones. Actinomycetes, the most prolific microbial source of known drugs, can produce new aromatic compounds by manipulation of the Type II polyketide synthase genes as well as analogs of existing macrolide antibiotics, unavailable by chemical synthesis, through targeted mutation of specific biosynthetic genes. Genetic alteration of pathways to aminoglycoside and oligopeptide antibiotics should offer equally promising approaches to manufacturing novel metabolites. When coupled with DNA–based prescreening of microbial isolates for genes associated with known pharmacologically active agents, these new genetic–based approaches are creating an expanded role for microorganisms in drug research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anderson, S., Marks, C.B., Lazarus, R., Miller, J., Stafford, K., Seymour, J., Light, D., Rastetter, W. and Estell, D. 1985. Production of 2-keto-L-gulonate: an intermediate in L-ascorbate synthesis by a genetically modified Erwinia herbicola. Science 230: 144–149.

    Article  CAS  Google Scholar 

  2. Murdock, D., Ensley, B.D., Serdar, C. and Thalen, M. 1993. Construction of metabolic operons catalyzing the de novo biosynthesis of indigo and Escherichia coli. Bio/Technology 11: 381–386.

    Article  CAS  Google Scholar 

  3. Draths, K.M., Ward, T.L. and Frost, J.W. 1992. Biocatalysis and nineteenth century organic chemistry: conversion of D-glucose into quinoid organics. J. Am. Chem. Soc. 114: 9725–9726.

    Article  CAS  Google Scholar 

  4. Skatrud, P.L., Tietz, A.J., Ingolia, T.D., Cantwell, C.A., Fisher, D.L., Chapman, J.I. and Queener, S.W. 1989. Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Bio/Technology 7: 477–485.

    CAS  Google Scholar 

  5. Isogai, T., Fukagawa, M., Aramuri, I., Iwami, M., Kojo, H., Ono, T., Ueda, Y., Kohsaka, M. and Imanaka, H. 1991. Construction of a 7-aminocephalosporanic acid (7ACA) biosynthetic operon and direct production of 7ACA in Acremonium chrysogenum. Bio/Technology 9: 188–191.

    CAS  PubMed  Google Scholar 

  6. Cantwell, C., Beckmann, R., Whiteman, P., Queener, S.W. and Abraham, E.P. 1992. Isolation of deacetoxycephalosporin C from fermentation broths of Penicillium chrysogenum transformants: construction of a new fungal biosynthetic pathway. Proc. R. Soc. London Ser. B, 248: 283–289.

    Article  CAS  Google Scholar 

  7. Pavia, M.R., Sawyer, T.K. and Moos, W.H. 1993. The generation of molecular diversity. Bioorg. Med. Chem. Lett. 3: 387–396.

    Article  CAS  Google Scholar 

  8. Amato, I. 1992. Speeding up a game of chance. Science 257: 330–331.

    Article  CAS  Google Scholar 

  9. Brenner, S. and Lerner, R.A. 1992. Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. USA 89: 5381–5383.

    Article  CAS  Google Scholar 

  10. Ellman, J.A. and Bunin, B.A. 1992. A general and expedient method for the solid-phase synthesis of 1,4-benzodiazepine derivatives. J. Am. Chem. Soc. 114: 10997–10998.

    Article  Google Scholar 

  11. Borchardt, A. and Still, W.C. 1994. Synthetic receptor binding elucidated with an encoded combinatorial library. J. Am. Chem. Soc. 116: 373–374.

    Article  CAS  Google Scholar 

  12. Chen, J.K., Lane, W.S., Brauer, A.W., Tanaka, A. and Schreiber, S.L. 1993. Biased combinatorial libraries: novel ligands for the SH3 ___domain of phosphatidylinositol 3-kinase. J. Am. Chem. Soc. 115: 12591–12592.

    Article  CAS  Google Scholar 

  13. Malpartida, F., Halam, S.E., Kieser, H.M., Motamedi, H., Hutchinson, C.R., Butler, M.J., Sugden, D.A., Warren, M., McKillop, C., Bailey, C.R., Humphreys, G.O. and Hopwood, D.A. 1987. Homology between Streptomyces genes coding tor synthesis of different polyketides used to clone antibiotic biosynthetic genes. Nature 325: 818–821.

    Article  CAS  Google Scholar 

  14. Bibb, M.J., Biro, S., Motamedi, H., Collins, J.F. and Hutchinson, C.R. 1989. Analysis of the nucleotide sequence of the Streptomyces glaucescens tcmI genes provides key information about the enzymology of polyketide antibiotic biosynthesis. EMBO J. 8: 2727–2736.

    Article  CAS  Google Scholar 

  15. Sherman, D.H., Malpartida, F., Bibb, M.J., Kieser, H.M., Bibb, M.J. and Hopwood, D.A. 1989. Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber TU22. EMBO J. 8: 2717–2725.

    Article  CAS  Google Scholar 

  16. Donadio, S., Staver, M.J., McAlpine, J.B., Swanson, S.J. and Katz, L. 1991. Modular organization of genes required for complex polyketide biosynthesis. Science 252: 675–679.

    Article  CAS  Google Scholar 

  17. Cortes, I., Haydock, S.F., Roberts, G.A., Bevitt, D.J. and Leadlay, P.F. 1990. An unusually large multifunctional polypeptide in the erythromycin polyketide synthase of Saccharopolyspora erythraea. Nature 346: 176–178.

    Article  Google Scholar 

  18. Reeves, P. 1993. Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale. Tr. Genetics 9: 17–22.

    Article  CAS  Google Scholar 

  19. Stockmann, M. and Piepersberg, W. 1992. Gene probes for the detection of 6-deoxyhexose metabolism in secondary metabolite-producing streptomycetes. FEMS Microbiol. Lett. 90: 185–190.

    Article  CAS  Google Scholar 

  20. Epp, J.K., Huber, M.L.B., Turner, J.R., Goodson, T. and Schoner, B.E. 1989. Production of a hybrid macrolide antibiotic in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans. Gene 85: 293–301.

    Article  CAS  Google Scholar 

  21. Hara, O. and Hutchinson, C.R. 1992. A macrolide 3-O-acyltransferase gene from the midecamycin-producing Streptomyces mycarofaciens. J. Bacteriol. 174: 5141–5144.

    Article  CAS  Google Scholar 

  22. Summers, R.G., Wendt-Pienkowski, E., Motamedi, H. and Hutchinson, C.R. 1992. Nucleotide sequence of the region of the tcmII-tcmIV region of the tetraceomycin C biosynthetic gene cluster of the Streptomyces glaucescens and evidence that the tcmN gene encodes a multifunctional cyclase-dehydratase-O-methyltransferase. J. Bacteriol. 174: 1810–1820.

    Article  CAS  Google Scholar 

  23. Decker, H., Motamedi, H. and Hutchinson, C.R. 1993. The nucleotide sequence and heterologous expression of tcmG and tcmP, biosynthetic genes for tetracenomycin C in Streptomyces glaucescens. J. Bacteriol. 175: 3876–3886.

    Article  CAS  Google Scholar 

  24. Madduri, K., Torti, F., Colombo, A.L. and Hutchinson, C.R. 1993. Cloning and sequencing of a gene encoding carminomycin 4-O-methyltransferase from Streptomyces peucetius and its expression in Escherichia coli. J. Bacteriol. 175: 3900–3904.

    Article  CAS  Google Scholar 

  25. Basinski, M., Bierman, M. and Schoner, B. 1994. Cloning of polyketide biosynthetic genes using colony hybridization and PCR. Top. Industr. Microbiol. In press.

  26. McAlpine, J.B., Tuan, J.S., Brown, D.P., Grebner, K.B., Whittern, D.N., Buko, A. and Katz, L. 1987. New antibiotics from genetically engineered actinomycetes. I. 2-Norerythromycins, isolation and structural determinations. J. Antibiotics 40: 1115–1122.

    Article  CAS  Google Scholar 

  27. Weber, J.M., Leung, J.O., Swanson, S.J., Idler, K.B. and McAlpine, J.B. 1991. An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea. Science 252: 114–117.

    Article  CAS  Google Scholar 

  28. Donadio, S., McAlpine, J.B., Sheldon, P.J., Jackson, M. and Katz, L. 1993. An erythromycin analog produced by reprogramming of polyketide synthesis. Proc. Natl. Acad. Sci. USA 90: 7119–7123.

    Article  CAS  Google Scholar 

  29. Morimoto, S., Takahashi, Y., Watanabe, Y. and Omura, S. 1984. Synthesis and antibacterial activity of 6-methylerythromycins A. J. Antibiotics 37: 187–189.

    Article  CAS  Google Scholar 

  30. Stassi, D., Donadio, S., Staver, M.J. and Katz, L. 1993. Identification of a Saccharopolyspora erythraea gene required for the final hydroxylation step in erythromycin biosynthesis. J. Bacteriol. 175: 182–189.

    Article  CAS  Google Scholar 

  31. Haydock, S.F., Downson, J.A., Dhillon, N., Roberts, G.A., Cortes, J. and Leadlay, P.F. 1991. Cloning and sequence analysis of genes involved in erythromycin biosynthesis in Saccharopolyspora erythraea: sequence similarities between EryG and a family of S-adenosylmethionine-dependent methyltransferases. Mol. Gen. Genet. 230: 120–128.

    Article  CAS  Google Scholar 

  32. Proctor, R.H. and Hohn, T.M. 1993). Aristolochene synthase. Isolation, characterization, and bacterial expression of a sesquiterpenoid biosynthetic gene (Aril) from Penicillum roqueforti.. J. Biol. Chem. 268: 4543–4548.

    CAS  PubMed  Google Scholar 

  33. Cane, D.E., Zhen, W., Oliver, J.S. and Hohn, T.M. 1993. Overproduction of soluble trichodiene synthase from Fusarium sporotrichioides in Escherichia coli. Arch. Biochem. Biophys. 300: 416–422.

    Article  CAS  Google Scholar 

  34. Andersen, J.F. and Hutchinson, C.R. 1993. Substrate specificity of 6-deoxyerythronolide B hydroxylase, a bacterial cytochrome P450 of erythromycin A biosynthesis. Biochemisty 32: 1905–1913.

    Article  CAS  Google Scholar 

  35. Huffman, G.W., Gesellchen, P.D., Turner, J.R., Rothenberger, R.B., Osborne, H.E., Miller, F.D., Chapman, J.L. and Queener, S.W. 1992. Substrate specificity of isopenicillin N synthase. J. Med. Chem. 35: 1897–1914.

    Article  CAS  Google Scholar 

  36. Baldwin, J.E., Lynch, G.P. and Pitlik, J. 1991. γ-Lactam analogues of β-lactam antibiotics. J. Antibiotics 44: 1–24.

    Article  CAS  Google Scholar 

  37. MacCabe, A. P., van Liempt, H., Palissa, H., Unkles, S., Riach, M.B.R., Pfeifer, E., von Dohren, H. and Kinghorn, J.R. 1991. δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. Molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway. J. Biol. Chem. 266: 12646–12654.

    Google Scholar 

  38. Baldwin, J.E., Adlington, R.M., Dryans, J.S., Lloyd, M.D., Sweell, T.J., Schofield, C.J., Baggaley, K.H. and Cassels, R. 1992. Enzymatic synthesis of bicyclic γ-lactams using clavaminic acid synthase. J. Chem. Soc. Chem. Commun. 1992: 877–879.

    Article  Google Scholar 

  39. McDaniel, R., Ebert-Khosla, S., Hopwood, D.A. and Khosla, C. 1993. Engineered biosynthesis of novel polyketides. Science 262: 1546–1550.

    Article  CAS  Google Scholar 

  40. McDaniel, R., Ebert-Khosla, S., Hopwood, D.A. and Khosla, C. 1993. Engineered biosynthesis of novel polyketides: Manipulation and analysis of an aromatic polyketid synthase with unproven catalytic specificities. J. Am. Chem. Soc. 115: 11671–11675.

    Article  CAS  Google Scholar 

  41. Harris, T.M. and Harris, C.M. 1986. Biomimetic syntheses of aromatic polyketide metabolites. Pure Appl. Chem. 58: 283–294.

    Article  CAS  Google Scholar 

  42. Shen, B. and Hutchinson, C.R. 1993. Enzymatic synthesis of a bacterial polyketide from acetyl and malonyl coenzyme A. Science 262: 1535–1540.

    Article  CAS  Google Scholar 

  43. Katz, L. and Donadio, S. 1993. Polyketide synthesis: Prospects for hybrid antibiotics. Annu. Rev. Microbiol. 47: 875–912.

    Article  CAS  Google Scholar 

  44. Marsden, A.F.A., Caffrey, P., Aparicio, J.F., Loughran, M.S., Staunton, J. and Leadlay, P.F. 1994. Strereospecific acyl transfers on the erythromycin-producing polyketide synthase. Science 263: 378–380.

    Article  CAS  Google Scholar 

  45. von Dohren, H., Pfeifer, E., van Liempt, H., Lee, Y.-O., Pavela-Vrancic, M. and Schwecke, T. 1993. The nonribosomal system: What we learn from the genes encoding protein templates, p. 159–167. In: Industrial Microorganisms: Basic and Applied Molecular Genetics. Baltz, R.H., Hegeman, G.D. and Skatrud, P.L. (Eds.). American Society for Microbiology, Washington, DC.

    Google Scholar 

  46. Liu, H.-W. and Thorson, J.S. 1994. Pathways and mechanisms in the biogenesis of novel deoxy sugars by bacteria. Ann. Rev. Microbiol. 48: In press.

    Article  CAS  Google Scholar 

  47. Chater, K.F. 1990. The improving prospects for yield increase by genetic engineering in antibiotic-producing Streptomycetes. Bio/Technology. 8: 115–121.

    CAS  PubMed  Google Scholar 

  48. Stutzman-Engwall, K.S., Otten, S.L. and Hutchinson, C.R. 1992. Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetlus. J. Bacteriol. 174: 144–154.

    Article  CAS  Google Scholar 

  49. Anzai, H., Murakami, T., Imai, S., Satoh, A., Nagaoka, K. and Thompson, C.J. 1987. Transcriptional regulation of bialaphos biosynthesis in Streptomyces hygroscopicus. J. Bacteriol. 169: 3482–3488.

    Article  CAS  Google Scholar 

  50. Hutchinson, C.R., Decker, H., Madduri, K., Otten, S.L. and Tang, L. 1994. Genetic control of polyketide biosynthesis in the genus Streptomyces. Anton. Leeu. J. Microbiol. XX: 1–12.

    Google Scholar 

  51. Horinouchi, S., Kito, M., Nishiyama, M., Furuya, K., Hong, S.-K., Miyake, K. and Beppu, T. 1990. Primary structure of AfsR, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor. Gene 95: 49–56.

    Article  CAS  Google Scholar 

  52. Decker, H., Summers, R.G. and Hutchinson, C.R. 1994. Overproduction of the acyl carrier protein component of a Type II polyketide synthase stimulates production of tetracenomycin biosynthetic intermediates in Streptomyces glaucescens. J. Antibiotics 47: 54–63.

    Article  CAS  Google Scholar 

  53. Thomas, D.I., Cove, J.H., Baumberg, S., Jones, C.A. and Rudd, B.A.M. 1991. Plasmid effects on secondary metabolite production by a Streptomycetes synthesizing an anthelmintic macrolide. J. Gen. Microbiol. 137: 2331–2337.

    Article  CAS  Google Scholar 

  54. Malmberg, L.-H., Hu, W.-S. and Sherman, D.H. 1993. Precursor flux control through targeted chromosomal insertion of the lysine ε-aminotransferase (lat) gene in cephamycin biosynthesis. J. Bacteriol. 175: 6916–6924.

    Article  CAS  Google Scholar 

  55. Hsieh, Y.-J. and Kolattukudy, P.E. 1994. Inhibition of erythromycin synthesis by disruption of malonyl-coenzyme A decarboxylase gene eryM in Saccharopolyspora erythraea. J. Bacteriol. 176: 714–724.

    Article  CAS  Google Scholar 

  56. Massey, L.M., Sokatch, J.R. and Conrad, R.S. 1976. Branched-chain amino acid catabolism in bacteria. Bacteriol. Rev. 40: 42–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tang, L. and Hutchinson, C.R. 1993. Sequence, transcriptional and functional analysis of the valine (branched-chain amino acid) dehydrogenase gene of Streptomyces coelicolor. J. Bacteriol. 175: 4176–4185.

    Article  CAS  Google Scholar 

  58. Peter, R. and McKinstry, R.C. 1994. Three-dimensional modeling and drug development. Bio/Technology 12: 147–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchinson, C. Drug Synthesis by Genetically Engineered Microorganisms. Nat Biotechnol 12, 375–380 (1994). https://doi.org/10.1038/nbt0494-375

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0494-375

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing