Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-molecule inhibition of TLR8 through stabilization of its resting state

Abstract

Endosomal Toll-like receptors (TLR3, TLR7, TLR8, and TLR9) are highly analogous sensors for various viral or bacterial RNA and DNA molecular patterns. Nonetheless, few small molecules can selectively modulate these TLRs. In this manuscript, we identified the first human TLR8-specific small-molecule antagonists via a novel inhibition mechanism. Crystal structures of two distinct TLR8–ligand complexes validated a unique binding site on the protein–protein interface of the TLR8 homodimer. Upon binding to this new site, the small-molecule ligands stabilize the preformed TLR8 dimer in its resting state, preventing activation. As a proof of concept of their therapeutic potential, we have demonstrated that these drug-like inhibitors are able to suppress TLR8-mediated proinflammatory signaling in various cell lines, human primary cells, and patient specimens. These results not only suggest a novel strategy for TLR inhibitor design, but also shed critical mechanistic insight into these clinically important immune receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CU-CPT8m potently and selectively inhibited TLR8.
Figure 2: Crystal structure of the TLR8–CU-CPT8m complex.
Figure 3: Proposed antagonistic mechanism of CU-CPT compounds (top) and schematic representation of ___domain arrangement in each TLR8 forms (bottom).
Figure 4: TLR8 inhibitors consistently recognize an allosteric pocket on the protein-protein interface, stabilizing the inactive TLR8 dimer.
Figure 5: TLR8 inhibitors suppress the proinflammatory cytokine production in multiple human primary cells derived from different patients.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22, 240–273 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Broz, P. & Monack, D.M. Newly described pattern recognition receptors team up against intracellular pathogens. Nat. Rev. Immunol. 13, 551–565 (2013).

    CAS  PubMed  Google Scholar 

  3. Pasare, C. & Medzhitov, R. Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 6, 1382–1387 (2004).

    CAS  PubMed  Google Scholar 

  4. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  PubMed  Google Scholar 

  5. Kawai, T. & Akira, S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med. 13, 460–469 (2007).

    CAS  PubMed  Google Scholar 

  6. Carpenter, S. & O'Neill, L.A. How important are Toll-like receptors for antimicrobial responses? Cell. Microbiol. 9, 1891–1901 (2007).

    CAS  PubMed  Google Scholar 

  7. Kanzler, H., Barrat, F.J., Hessel, E.M. & Coffman, R.L. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat. Med. 13, 552–559 (2007).

    CAS  PubMed  Google Scholar 

  8. Mohammad Hosseini, A., Majidi, J., Baradaran, B. & Yousefi, M. Toll-like receptors in the pathogenesis of autoimmune diseases. Adv. Pharm. Bull. 5 Suppl 1: 605–614 (2015).

    PubMed Central  PubMed  Google Scholar 

  9. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    CAS  PubMed  Google Scholar 

  10. Panter, G., Kuznik, A. & Jerala, R. Therapeutic applications of nucleic acids as ligands for Toll-like receptors. Curr. Opin. Mol. Ther. 11, 133–145 (2009).

    CAS  PubMed  Google Scholar 

  11. Gantier, M.P. et al. TLR7 is involved in sequence-specific sensing of single-stranded RNAs in human macrophages. J. Immunol. 180, 2117–2124 (2008).

    CAS  PubMed  Google Scholar 

  12. Gorden, K.B. et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J. Immunol. 174, 1259–1268 (2005).

    CAS  PubMed  Google Scholar 

  13. Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    CAS  PubMed  Google Scholar 

  14. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    CAS  PubMed  Google Scholar 

  15. Papadimitraki, E.D., Bertsias, G.K. & Boumpas, D.T. Toll like receptors and autoimmunity: a critical appraisal. J. Autoimmun. 29, 310–318 (2007).

    CAS  PubMed  Google Scholar 

  16. Barrat, F.J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Watanabe, M. et al. Dihydropyrrolo[2,3-d]pyrimidines: selective toll-like receptor 9 antagonists from scaffold morphing efforts. ACS Med. Chem. Lett. 5, 1235–1239 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Cheng, K., Wang, X. & Yin, H. Small-molecule inhibitors of the TLR3/dsRNA complex. J. Am. Chem. Soc. 133, 3764–3767 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Hennessy, E.J., Parker, A.E. & O'Neill, L.A. Targeting Toll-like receptors: emerging therapeutics? Nat. Rev. Drug Discov. 9, 293–307 (2010).

    CAS  PubMed  Google Scholar 

  21. Kondo, T., Kawai, T. & Akira, S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 33, 449–458 (2012).

    CAS  PubMed  Google Scholar 

  22. Botos, I., Segal, D.M. & Davies, D.R. The structural biology of Toll-like receptors. Structure 19, 447–459 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Tanji, H., Ohto, U., Shibata, T., Miyake, K. & Shimizu, T. Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science 339, 1426–1429 (2013).

    CAS  PubMed  Google Scholar 

  24. Tanji, H. et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat. Struct. Mol. Biol. 22, 109–115 (2015).

    CAS  PubMed  Google Scholar 

  25. Kokatla, H.P. et al. Exquisite selectivity for human toll-like receptor 8 in substituted furo[2,3-c]quinolines. J. Med. Chem. 56, 6871–6885 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Salunke, D.B. et al. Structure-activity relationships in human Toll-like receptor 8-active 2,3-diamino-furo[2,3-c]pyridines. J. Med. Chem. 55, 8137–8151 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Kuznik, A. et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol. 186, 4794–4804 (2011).

    CAS  PubMed  Google Scholar 

  28. Schön, M.P. & Schön, M. TLR7 and TLR8 as targets in cancer therapy. Oncogene 27, 190–199 (2008).

    PubMed  Google Scholar 

  29. Lamphier, M. et al. Novel small molecule inhibitors of TLR7 and TLR9: mechanism of action and efficacy in vivo. Mol. Pharmacol. 85, 429–440 (2014).

    PubMed  Google Scholar 

  30. Liu, H., Liu, Z.H., Chen, Z.H., Yang, J.W. & Li, L.S. Triptolide: a potent inhibitor of NF-kappa B in T-lymphocytes. Acta Pharmacol. Sin. 21, 782–786 (2000).

    CAS  PubMed  Google Scholar 

  31. Jurk, M. et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3, 499 (2002).

    CAS  PubMed  Google Scholar 

  32. Yin, H. & Flynn, A.D. Drugging membrane protein interactions. Annu. Rev. Biomed. Eng. 18, 51–76 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Beesu, M. et al. Structure-based design of human TLR8-specific agonists with augmented potency and adjuvanticity. J. Med. Chem. 58, 7833–7849 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Valencia Pacheco, G.J. et al. Expression and activation of intracellular receptors TLR7, TLR8 and TLR9 in peripheral blood monocytes from HIV-infected patients. Colomb. Med. 44, 92–99 (2013).

    Google Scholar 

  35. Zhang, Z. et al. Structural analysis reveals that toll-like receptor 7 Is a dual receptor for guanosine and single-stranded RNA. Immunity 45, 737–748 (2016).

    CAS  PubMed  Google Scholar 

  36. Kaczanowska, S., Joseph, A.M. & Davila, E. TLR agonists: our best frenemy in cancer immunotherapy. J. Leukoc. Biol. 93, 847–863 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    CAS  PubMed  Google Scholar 

  38. Tseng, P.H. et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat. Immunol. 11, 70–75 (2010).

    CAS  PubMed  Google Scholar 

  39. Duffy, L. & O'Reilly, S.C. Toll-like receptors in the pathogenesis of autoimmune diseases: recent and emerging translational developments. ImmunoTargets Ther. 5, 69–80 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Liu, J. et al. A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition. Mol. Immunol. 47, 1083–1090 (2010).

    CAS  PubMed  Google Scholar 

  41. Mullen, L., Ferdjani, J. & Sacre, S. Simvastatin inhibits Toll-like receptor 8 (TLR8) signaling in primary human monocytes and spontaneous tumor necrosis factor production from rheumatoid synovial membrane cultures. Mol. Med. 21, 726–734 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Sacre, S.M. et al. Inhibitors of TLR8 reduce TNF production from human rheumatoid synovial membrane cultures. J. Immunol. 181, 8002–8009 (2008).

    CAS  PubMed  Google Scholar 

  43. Castañeda, S., Blanco, R. & González-Gay, M.A. Adult-onset Still's disease: advances in the treatment. Best Pract. Res. Clin. Rheumatol. 30, 222–238 (2016).

    PubMed  Google Scholar 

  44. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    CAS  PubMed  Google Scholar 

  45. Piccinini, A.M. & Midwood, K.S. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010, 672395 (2010).

    PubMed Central  PubMed  Google Scholar 

  46. Guiducci, C. et al. RNA recognition by human TLR8 can lead to autoimmune inflammation. J. Exp. Med. 210, 2903–2919 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Cheng, K. et al. Specific activation of the TLR1-TLR2 heterodimer by small-molecule agonists. Sci. Adv. 1, e1400139 (2015).

    PubMed Central  PubMed  Google Scholar 

  48. Csakai, A. et al. Saccharin derivatives as inhibitors of interferon-mediated inflammation. J. Med. Chem. 57, 5348–5355 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Das, N. et al. HMGB1 activates proinflammatory signaling via TLR5 leading to allodynia. Cell Rep. 17, 1128–1140 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  PubMed  Google Scholar 

  51. Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R. & Leslie, A.G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).

    CAS  PubMed  Google Scholar 

  53. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  54. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  55. Brennan, F.M., Chantry, D., Jackson, A.M., Maini, R.N. & Feldmann, M. Cytokine production in culture by cells isolated from the synovial membrane. J. Autoimmun. 2 (Suppl.) 177–186 (1989).

    PubMed  Google Scholar 

  56. Ulmer, A.J., Scholz, W., Ernst, M., Brandt, E. & Flad, H.D. Isolation and subfractionation of human peripheral blood mononuclear cells (PBMC) by density gradient centrifugation on Percoll. Immunobiology 166, 238–250 (1984).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Institute of Health (NIH R01GM101279 to H.Y.), National Natural Science Foundation of China (No. 21572114 to H.Y. and No. 81401333 to J.L.), the University Key Scientific Research Program Foundation of Henan Province (No. 5201039140120 to S.Z.) and Grant-in-Aid from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (H.T., U.O., and T.S.), CREST JST (T.S.), the Takeda Science Foundation (U.O. and T.S.), the Mochida Memorial Foundation for Medical and Pharmaceutical Research (U.O.), the Naito Foundation (U.O.), and the Daiichi Sankyo Foundation of Life Science (U.O.). We thank X. Wang and W. Wang for their assistance with high-throughput screening and data analysis. We thank J. Dragavon for his assistance with confocal microscopy. We thank Y. Yamada and A. Shinoda for automated data collection at Photon Factory.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. designed the project and supervised data analysis. S.Z. designed the experiments in consultation with H.Y. S.Z. performed the cell line establishment and high throughput screening. S.Z. and Z.H. performed chemical synthesis of compounds, cell culture and cellular inhibition studies. S.Z., Z.H., S.J., and N.D. performed immunoblotting experiments. H.T., K.S., U.O., and T.S. expressed protein, solved the crystal structure, performed isothermal titration calorimetry and gel-filtration experiments. J.L., J.J., and Y.B. contributed to the patient PBMC and synovial tissues extraction. S.J. performed PBMC and synovial cells extraction. S.J. and S.Z. performed primary cell and patient specimen studies. H.Y. and S.Z. wrote the manuscript with input from Z.H., S.J., and H.T.

Corresponding authors

Correspondence to Toshiyuki Shimizu or Hang Yin.

Ethics declarations

Competing interests

H.Y., S.Z., and Z.H. have filed a patent application based on the technology reported in this manuscript.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4, Supplementary Figures 1–17 (PDF 2115 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Supplementary Note 1

Chemical synthesis and characterizations (PDF 623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Hu, Z., Tanji, H. et al. Small-molecule inhibition of TLR8 through stabilization of its resting state. Nat Chem Biol 14, 58–64 (2018). https://doi.org/10.1038/nchembio.2518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing