Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups

Key Points

  • RNA viruses, which are most common in eukaryotes, are among the simplest forms of life.

  • Genomic and metagenomic studies have highlighted remarkable diversity of a major class of RNA viruses, the extended picornavirus-like superfamily.

  • Phylogenetic analysis reveals close evolutionary relationships between RNA viruses infecting unicellular eukaryotes and distinct families of picorna-like viruses of plants and animals.

  • This suggests that diversification of picorna-like viruses antedated radiation of the eukaryotes and probably occurred in a 'Big Bang' concomitant with the key events of eukaryogenesis.

  • The origins of the conserved genes of picorna-like viruses can be traced to specific prokaryotic ancestors.

  • The Big Bang of picorna-like virus evolution might have been triggered by chance assembly of these ancestral genes at the earliest stages of eukaryogenesis.

Abstract

The recent discovery of RNA viruses in diverse unicellular eukaryotes and developments in evolutionary genomics have provided the means for addressing the origin of eukaryotic RNA viruses. The phylogenetic analyses of RNA polymerases and helicases presented in this Analysis article reveal close evolutionary relationships between RNA viruses infecting hosts from the Chromalveolate and Excavate supergroups and distinct families of picorna-like viruses of plants and animals. Thus, diversification of picorna-like viruses probably occurred in a 'Big Bang' concomitant with key events of eukaryogenesis. The origins of the conserved genes of picorna-like viruses are traced to likely ancestors including bacterial group II retroelements, the family of HtrA proteases and DNA bacteriophages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The genome layouts in the main evolutionary lineages (clades) of picorna-like viruses.
Figure 2: The host ranges of picorna-like viruses.
Figure 3: The phylogenetic tree of the RNA-dependent RNA polymerases of picorna-like viruses.
Figure 4: The phylogenetic tree of superfamily 3 helicases of picorna-like viruses.
Figure 5: The proposed evolutionary scenario for the picorna-like superfamily of positive-strand RNA viruses of eukaryotes.

Similar content being viewed by others

References

  1. Joyce, G. F. The antiquity of RNA-based evolution. Nature 418, 214–221 (2002). In-depth analysis of the RNA world concept of the primordial genetic systems.

    Article  CAS  PubMed  Google Scholar 

  2. Koonin, E. V. & Martin, W. On the origin of genomes and cells within inorganic compartments. Trends Genet. 21, 647–654 (2005). A conceptual framework for the origin of life within microscopic mineral compartments at hydrothermal vents through Darwinian selection of self-replicating, recombining RNA molecules that gradually evolved into complex molecular ensembles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Holmes, E. C. & Drummond, A. J. The evolutionary genetics of viral emergence. Curr. Top. Microbiol. Immunol. 315, 51–66 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Edwards, R. A. & Rohwer, F. Viral metagenomics. Nature Rev. Microbiol. 3, 504–510 (2005).

    Article  CAS  Google Scholar 

  6. Angly, F. E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, e368 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suttle, C. A. Marine viruses — major players in the global ecosystem. Nature Rev. Microbiol. 5, 801–812 (2007). This incisive review provides a broad prospective on the abundance, diversity and role of the marine viruses in the biosphere.

    Article  CAS  Google Scholar 

  8. Prangishvili, D., Garrett, R. A. & Koonin, E. V. Evolutionary genomics of archaeal viruses: unique viral genomes in the third ___domain of life. Virus Res. 117, 52–67 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Khayat, R. et al. Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proc. Natl Acad. Sci. USA 102, 18944–18949 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ortmann, A. C., Wiedenheft, B., Douglas, T. & Young, M. Hot crenarchaeal viruses reveal deep evolutionary connections. Nature Rev. Microbiol. 4, 520–528 (2006).

    Article  CAS  Google Scholar 

  11. Nandhagopal, N. et al. The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc. Natl Acad. Sci. USA 99, 14758–14763 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dunigan, D. D., Fitzgerald, L. A. & Van Etten, J. L. Phycodnaviruses: a peek at genetic diversity. Virus Res. 117, 119–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Dupuy, C., Huguet, E. & Drezen, J. M. Unfolding the evolutionary story of polydnaviruses. Virus Res. 117, 81–89 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Raoult, D. et al. The 1.2-megabase genome sequence of Mimivirus. Science 306, 1344–1350 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Claverie, J. M. et al. Mimivirus and the emerging concept of “giant” virus. Virus Res. 117, 133–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Hendrix, R. W. Bacteriophage genomics. Curr. Opin. Microbiol. 6, 506–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Casjens, S. R. Comparative genomics and evolution of the tailed-bacteriophages. Curr. Opin. Microbiol. 8, 451–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Bamford, D. H., Grimes, J. M. & Stuart, D. I. What does structure tell us about virus evolution? Curr. Opin. Struct. Biol. 15, 655–663 (2005). Homologous capsid proteins are seen in a wide variety of superficially unrelated icosahedral viruses that infect diverse hosts, in a striking demonstration of far-reaching evolutionary connections between viruses.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, J., Glazko, G. & Mushegian, A. Protein repertoire of double-stranded DNA bacteriophages. Virus Res. 117, 68–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Pedulla, M. L. et al. Origins of highly mosaic mycobacteriophage genomes. Cell 113, 171–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Sullivan, M. B. et al. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 4, e234 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iyer, L. M., Balaji, S., Koonin, E. V. & Aravind, L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 117, 156–184 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Claverie, J. M. Viruses take center stage in cellular evolution. Genome Biol. 7, 110 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Forterre, P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 117, 5–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Forterre, P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular ___domain. Proc. Natl Acad. Sci. USA 103, 3669–3674 (2006). A hypothesis that implicates viruses in the independent origins of the DNA replication machineries of the three domains of cellular life.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gorinsek, B., Gubensek, F. & Kordis, D. Phylogenomic analysis of chromoviruses. Cytogenet. Genome Res. 110, 543–552 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Koonin, E. V. & Dolja, V. V. Evolution of complexity in the viral world: the dawn of a new vision. Virus Res. 117, 1–4 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Koonin, E. V., Senkevich, T. G. & Dolja, V. V. The ancient virus world and evolution of cells. Biol. Direct 1, 29 (2006). This article developed the concept of 'viral hallmark genes' — genes that are present in a variety of viruses but not in cellular life forms — and proposed that these genes comprise an uninterrupted flow of genetic information from pre-cellular stages of evolution to this day.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pritham, E. J., Putliwala, T. & Feschotte, C. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390, 3–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Raoult, D. & Forterre, P. Redefining viruses: lessons from Mimivirus. Nature Rev. Microbiol. 6, 315–319 (2008). A new definition of viruses capitalizes on the sharp distinction between viruses as capsid-encoding organisms and cellular life forms as ribosome-encoding organisms.

    Article  CAS  Google Scholar 

  31. Hull, R. Matthews' Plant Virology (Academic Press, San Diego, 2001).

    Google Scholar 

  32. Knipe, D. M. & Howley, P. M. Fields Virology (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  33. Koonin, E. V. & Dolja, V. V. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 28, 375–430 (1993). A conceptual synthesis on the early studies in comparative genomics and evolution of positive-strand RNA viruses; advances the concept of the three major superfamilies of the positive-strand RNA viruses.

    Article  CAS  PubMed  Google Scholar 

  34. Bollback, J. P. & Huelsenbeck, J. P. Phylogeny, genome evolution, and host specificity of single-stranded RNA bacteriophage (family Leviviridae). J. Mol. Evol. 52, 117–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Ruokoranta, T. M., Grahn, A. M., Ravantti, J. J., Poranen, M. M. & Bamford, D. H. Complete genome sequence of the broad host range single-stranded RNA phage PRR1 places it in the Levivirus genus with characteristics shared with Alloleviviruses. J. Virol. 80, 9326–9330 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lang, A. S., Culley, A. I. & Suttle, C. A. Genome sequence and characterization of a virus (HaRNAV) related to picorna-like viruses that infects the marine toxic bloom-forming alga Heterosigma akashiwo. Virology 320, 206–217 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Nagasaki, K. et al. Comparison of genome sequences of single-stranded RNA viruses infecting the bivalve-killing dinoflagellate Heterocapsa circularisquama. Appl. Environ. Microbiol 71, 8888–8894 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takao, Y., Mise, K., Nagasaki, K., Okuno, T. & Honda, D. Complete nucleotide sequence and genome organization of a single-stranded RNA virus infecting the marine fungoid protist Schizochytrium sp. J. Gen. Virol. 87, 723–733 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Shirai, Y. et al. Genomic and phylogenetic analysis of a single-stranded RNA virus infecting Rhizosolenia setigera (Stramenopiles: Baccilariophyceae). J. Mar. Biol. Ass. UK 86, 475–483 (2006).

    Article  CAS  Google Scholar 

  40. Culley, A. I., Lang, A. S. & Suttle, C. A. High diversity of unknown picorna-like viruses in the sea. Nature 424, 1054–1057 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Culley, A. I., Lang, A. S. & Suttle, C. A. Metagenomic analysis of coastal RNA virus communities. Science 312, 1795–1798 (2006). This article uses the power of metagenomics to address diversity and evolutionary affinities of uncultured marine RNA viruses.

    Article  CAS  PubMed  Google Scholar 

  42. Culley, A. I., Lang, A. S. & Suttle, C. A. The complete genomes of three viruses assembled from shotgun libraries of marine RNA virus communities. Virol. J. 4 (2007).

  43. Culley, A. I. & Steward, G. F. New genera of RNA viruses in subtropical seawater, inferred from polymerase gene sequences. Appl. Environ. Microbiol. 73, 5937–5944 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koonin, E. V. The Biological Big Bang model for the major transitions in evolution. Biol. Direct 2, 21 (2007). A unifying concept of the major transitions in evolution as episodes of explosive diversification powered by rampant gene exchange and recombination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Domingo, E., Escarmis, C., Mendez-Arias, L. & Holland, J. J. in Origin and Evolution of Viruses (eds Domingo, E., Webster, R. & Holland, J.) 141–161 (Academic Press, San Diego, 1999).

    Book  Google Scholar 

  46. Gromeier, M., Wimmer, E. & Gorbalenya, A. E. in Origin and Evolution of Viruses (eds Domingo, E., Webster, R. & Holland, J.) 287–344 (Academic Press, San Diego, 1999).

    Book  Google Scholar 

  47. Crotty, S., Cameron, C. E. & Andino, R. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc. Natl Acad. Sci. USA 98, 6895–6900 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Domingo, E. et al. Viruses as quasispecies: biological implications. Curr. Top. Microbiol. Immunol. 299, 51–82 (2006). A recent review that emphasizes the significance of quasispecies for the adaptability and pathogenesis of RNA viruses and the ongoing evolution of the viral populations.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. & Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Domingo, E., Martin, V., Perales, C. & Escarmis, C. Coxsackieviruses and quasispecies theory: evolution of enteroviruses. Curr. Top. Microbiol. Immunol. 323, 3–32 (2008).

    CAS  PubMed  Google Scholar 

  51. Biebricher, C. K. & Eigen, M. What is a quasispecies? Curr. Top. Microbiol. Immunol. 299, 1–31 (2006). A broad analysis of the quasispecies concept and its application to the rapidly evolving RNA viruses.

    CAS  PubMed  Google Scholar 

  52. Koonin, E. V. & Gorbalenya, A. E. Evolution of RNA genomes: does the high mutation rate necessitate high rate of evolution of viral proteins? J. Mol. Evol. 28, 524–527 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Goldbach, R. Genome similarities between plant and animal RNA viruses. Microbiol. Sci. 4, 197–202 (1987). The beginnings of the concept of superfamilies of positive-strand RNA viruses that span wide ranges of hosts.

    CAS  PubMed  Google Scholar 

  54. Goldbach, R. & Wellink, J. Evolution of plus-strand RNA viruses. Intervirology 29, 260–267 (1988).

    Article  CAS  PubMed  Google Scholar 

  55. Koonin, E. V. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J. Gen. Virol. 72 (Pt 9), 2197–2206 (1991).

    Article  PubMed  Google Scholar 

  56. Zanotto, P. M., Gibbs, M. J., Gould, E. A. & Holmes, E. C. A reevaluation of the higher taxonomy of viruses based on RNA polymerases. J. Virol. 70, 6083–6096 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Strauss, E. G., Strauss, J. H. & Levine, A. J. in Fields Virology (eds Fields, B. N., Knipe, D. M. & Howley, P. M.) 153–171 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  58. Gibbs, M. J., Koga, R., Moriyama, H., Pfeiffer, P. & Fukuhara, T. Phylogenetic analysis of some large double-stranded RNA replicons from plants suggests they evolved from a defective single-stranded RNA virus. J. Gen. Virol. 81, 227–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Gorbalenya, A. E., Enjuanes, L., Ziebuhr, J. & Snijder, E. J. Nidovirales: evolving the largest RNA virus genome. Virus Res. 117, 17–37 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Johnson, K. N., Johnson, K. L., Dasgupta, R., Gratsch, T. & Ball, A. L. Comparisons among the larger genome segments of six nodaviruses and their encoded RNA replicases. J. Gen. Virol. 82, 1855–1866 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Koonin, E. V. Evolution of double-stranded RNA viruses: a case for polyphyletic origin from different groups of positive-stranded RNA viruses. Semin. Virol. 3, 327–339 (1992).

    CAS  Google Scholar 

  62. Koonin, E. V., Gorbalenya, A. E. & Chumakov, K. M. Tentative identification of RNA-dependent RNA polymerases of dsRNA viruses and their relationship to positive strand RNA viral polymerases. FEBS Lett. 252, 42–46 (1989).

    Article  CAS  PubMed  Google Scholar 

  63. Gorbalenya, A. E. et al. The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. J. Mol. Biol. 324, 47–62 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ahlquist, P. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nature Rev. Microbiol. 4, 371–382 (2006). A recent perspective on structural, functional and mechanistic similarities in replication of the diverse viruses that have RNA genomes.

    Article  CAS  Google Scholar 

  65. Keeling, P. J. et al. The tree of eukaryotes. Trends Ecol. Evol. 20, 670–676 (2005). A conceptually important overview of eukaryotic evolution that introduces five supergroups, the exact relationships between which are difficult to determine.

    Article  PubMed  Google Scholar 

  66. Keeling, P. J. Genomics. Deep questions in the tree of life. Science 317, 1875–1876 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Hacker, C. V., Brasier, C. M. & Buck, K. W. A double-stranded RNA from a Phytophtora species is related to the plant endornaviruses and contains a putative UDP glycosyltransferase gene. J. Gen. Virol. 86, 1561–1570 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Le Gall, O. et al. Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture. Arch. Virol. 153, 715–727 (2008). A formal description of the proposed order Picornavirales that comprises the core of the picorna-like virus superfamily.

    Article  CAS  PubMed  Google Scholar 

  69. Lima-Mendez, G., Van Helden, J., Toussaint, A. & Leplae, R. Reticulate representation of evolutionary and functional relationships between phage genomes. Mol. Biol. Evol. 25, 762–777 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Gordon, K. H. J. & Waterhouse, P. M. Small RNA viruses of insects: expression in plants and RNA silencing. Adv. Virus Res. 68, 459–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Van der Wilk, F., Dullemans, A. M., Verbeek, M. & Van der Heuvel, J. F. J. M. Nucleotide sequence and genomic organization of Acyrthosiphon pisum virus. Virology 238, 353–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Habayeb, M. S., Ekengren, S. K. & Hultmark, D. Nora virus, a persistent virus in Drosophila, defines a new picorna-like family. J. Gen. Virol. 87, 3045–3051 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Revill, P. A., Davidson, A. D. & Wright, P. J. The nucleotide sequence and genome organization of mushroom bacilliform virus. Virology 202, 904–911 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Yokoi, T., Takemoto, Y., Suzuki, M., Yamashita, S. & Hibi, T. The nucleotide sequence and genome organization of Sclerophtora macrospora virus B. Virology 264, 344–349 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Yokoi, T., Yamashita, S. & Hibi, T. The nucleotide sequence and genome organization of Sclerophtora macrospora virus A. Virology 311, 394–399 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Matsui, S. M. & Greenberg, H. B. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 875–893 (Lippncott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  77. Koonin, E. V., Choi, G. H., Nuss, D. L., Shapira, R. & Carrington, J. C. Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive-strand RNA plant viruses. Proc. Natl Acad. Sci. USA 88, 10647–10651 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nuss, D. L. Hypovirulence: mycoviruses at the fungal-plant interface. Nature Rev. Microbiol. 3, 632–642 (2005). This article provides conceptual analysis of the interactions between viruses and their plant pathogenic fungal hosts.

    Article  CAS  Google Scholar 

  79. Linder-Basso, D., Dynek, J. N. & Hillman, B. I. Genome analysis of Cryphonectria hypovirus 4, the most common hypovirus species in North America. Virology 337, 192–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Chu, Y. M. et al. Double-stranded RNA mycovirus from Fusarium graminearum. Appl. Environ. Microbiol. 68, 2529–2534 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jiang, B., Monroe, S. S., Koonin, E. V., Stine, S. E. & Glass, R. I. RNA sequence of astrovirus: distinctive genomic organization and a putative retrovirus-like ribosomal frameshifting signal that directs the viral replicase synthesis. Proc. Natl. Acad. Sci. USA 90, 10539–10543 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Green, K. Y., Chanock, R. M. & Kapikian, A. Z. in Fields Virology (eds. Knipe, D. M. & Howley, P. M.) 841–874 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  83. Ghabrial, S. A. Origin, adaptation and evolutionary pathways of fungal viruses. Virus Genes 16, 119–131 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Caston, J. R. et al. Three-dimentional structure and stoichometry of Helmintosporium victroriae 190S totivirus. Virology 347, 323–332 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Khramtsov, N. V. & Upton, S. J. Association of RNA polymerase complexes of the parasitic protozoan Cryptosporidium parvum with virus-like particles: heterogeneous system. J. Virol. 74, 5788–5795 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Koga, R., Horiuchi, H. & Fukuhara, T. Double-stranded RNA replicons associated with chloroplasts of a green alga, Bryopsis cinicola. Plant Mol. Biol. 51, 991–999 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Valles, S. M., Strong, C. A. & Hashimoto, Y. A new positive-strand RNA virus with unique genome characteristics from the red imported fire ant, Solenopsis invicta. Virology 365, 457–463 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Gorbalenya, A. E., Donchenko, A. P., Blinov, V. M. & Koonin, E. V. Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett. 243, 103–114 (1989). The first demonstration of a highly significant sequence similarity between picornaviral 3CPros and the HtrA family of bacterial proteases.

    Article  CAS  PubMed  Google Scholar 

  89. Crawford, L. J. et al. Molecular characterization of a partitivirus from Ophiostoma himal-ulmi. Virus Genes 33, 33–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006). A comprehensive review of the current concepts of the origin of the eukaryotic cell that makes the sharp distinction between symbiotic and archezoan scenarios.

    Article  CAS  PubMed  Google Scholar 

  91. Martin, W. & Koonin, E. V. Introns and the origin of nucleus–cytosol compartmentation. Nature 440, 41–45 (2006). A hypothesis of the major role of the invasion of group II introns as the principal driving force behind the emergence of the nucleus during eukaryogenesis.

    Article  CAS  PubMed  Google Scholar 

  92. Martin, W. & Muller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155 (2004). An original method of phylogenetic analysis provides evidence in support of the origin of eukaryotic cell through fusion of prokaryotic genomes.

    Article  CAS  PubMed  Google Scholar 

  94. Kurland, C. G., Collins, L. J. & Penny, D. Genomics and the irreducible nature of eukaryote cells. Science 312, 1011–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Poole, A. & Penny, D. Eukaryote evolution: engulfed by speculation. Nature 447 913 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Poch, O., Sauvaget, I., Delarue, M. & Tordo, N. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 8, 3867–3874 (1989). The first clear demonstration of structural and evolutionary relationships between viral RdRps and reverse transcriptases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ago, H. et al. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Structure 7, 1417–1426 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Hansen, J. L., Long, A. M. & Schultz, S. C. Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5, 1109–1122 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Ng, K. K., Arnold, J. J. & Cameron, C. E. Structure-function relationships among RNA-dependent RNA polymerases. Curr. Top. Microbiol. Immunol. 320, 137–156 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Arnold, J. J., Ghosh, S. K. & Cameron, C. E. Poliovirus RNA-dependent RNA polymerase (3Dpol). Divalent cation modulation of primer, template, and nucleotide selection. J. Biol. Chem. 274, 37060–37069 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Arnold, J. J., Gohara, D. W. & Cameron, C. E. Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mn2+. Biochemistry 43, 5138–5148 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Hung., M., Gibbs, C. S. & Tsiang, M. Biochemical characterization of rhinovirus RNA-dependent RNA polymerase. Antiviral Res. 56, 99–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Lambowitz, A. M. & Zimmerly, S. Mobile group II introns. Annu. Rev. Genet. 38, 1–35 (2004). This article reviews the mechanistic and evolutionary aspects of group II introns that were implicated in the origin of spliceosomal introns.

    Article  CAS  PubMed  Google Scholar 

  105. Robart, A. R. & Zimmerly, S. Group II intron retroelements: function and diversity. Cytogenet. Genome Res. 110, 589–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Toor, N., Keating, K. S., Taylor, S. D. & Pyle, A. M. Crystal structure of a self-spliced group II intron. Science 320, 77–82 (2008). This article reviews the mechanistic and evolutionary aspects of group II introns that were implicated in the origin of spliceosomal introns.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Eickbush, T. H. & Jamburunthugoda, V. K. The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res. 134, 221–234 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Arkhipova, I. R., Pyatkov, K. I., Meselson, M. & Evgen'ev, M. B. Retroelements containing introns in diverse invertebrate taxa. Nature Genet. 33, 123–124 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Gladyshev, E. A. & Arkhipova, I. R. Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes. Proc. Natl. Acad. Sci. USA 104, 9352–9357 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Clausen, T., Southan, C. & Ehrmann, M. The HtrA family of proteases: implications for protein composition and cell fate. Mol. Cell 10, 443–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Li, W. et al. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nature Struct. Biol. 9, 436–441 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Gorbalenya, A. E., Koonin, E. V. & Wolf, Y. I. A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett. 262, 145–148 (1990).

    Article  CAS  PubMed  Google Scholar 

  113. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  114. Iyer, L. M., Leipe, D. D., Koonin, E. V. & Aravind, L. Evolutionary history and higher order classification of AAA+ ATPases. J. Struct. Biol. 146, 11–31 (2004). An evolutionary classification of the vast class of the cellular and viral ATPases in the context of the origins of primordial genetic systems, last universal common ancestor, bacteria, archaea and eukaryotes. It describes S3Hs as a distinct branch within the AAA+ class of ATPases.

    Article  CAS  PubMed  Google Scholar 

  115. Maaty, W. S. et al. Characterization of the archaeal thermophile Sulfolobus turreted icosahedral virus validates an evolutionary link among double-stranded DNA viruses from all domains of life. J. Virol. 80, 7625–7635 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Does common architecture reveal a viral lineage spanning all three domains of life? Mol. Cell 16, 673–685 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Dolja, V. V., Boyko, V. P., Agranovsky, A. A. & Koonin, E. V. Phylogeny of capsid proteins of rod-shaped and filamentous plant viruses: two families with distinct patterns of sequence and probably structure conservation. Virology 184, 79–86 (1991).

    Article  CAS  PubMed  Google Scholar 

  118. McGeoch, D. J., Rixon, F. J. & Davison, A. J. Topics in herpesvirus genomics and evolution. Virus Res. 117, 90–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Dolja, V. V. & Koonin, E. V. Phylogeny of capsid proteins of small icosahedral RNA plant viruses. J. Gen. Virol. 72 1481–1486 (1991).

    Article  PubMed  Google Scholar 

  120. Schneemann, A., Reddy, V. & Johnson, J. E. The structure and function of nodavirus particles: a paradigm for understanding chemical biology. Adv. Virus Res. 50, 381–466 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jobb, G., von Haeseler, A. & Strimmer, K. TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol. Biol. 4, 18 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Professor Vadim I. Agol. We thank V. Agol and T. Senkevich for critical reading of the manuscript and useful comments. E.V.K. and Y.I.W. are supported by the Department of Health and Human Services (National Library of Medicine, National Institutes for Health) intramural research funds. The research in V.V.D.'s laboratory is partially supported by National Institutes for Health grant GM053190 and BARD award no. IS-3,784-05.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eugene V. Koonin or Valerian V. Dolja.

Supplementary information

Related links

Related links

DATABASES

Entrez Genome

kelp fly virus

phi29

FURTHER INFORMATION

Eugene V. Koonin's homepage

Keizo Nagasaki's homepage

International Committee on Taxonomy of Viruses

MrBayes

RefSeq

TreeFinder

Glossary

Virosphere

Also termed virus world, the virosphere is the entirety of viruses and virus-like agents comprising a genetic pool that is continuous in space and time and encompasses, in particular, hallmark viral genes that encode essential functions of many diverse viruses but are not found in genomes of cellular life forms.

Superfamily

In this context, a superfamily is a large group of viral families that are thought to have evolved from a common ancestor.

Picornaviruses

Narrowly defined, picornaviruses are a family of small, positive-strand RNA viruses that infect animals including humans (for example, poliovirus and foot-and-mouth disease virus). Broadly defined, the superfamily of picorna-like viruses consists of many families of RNA viruses that infect animals, plants and diverse unicellular eukaryotes, and appear to be evolutionarily related to picornaviruses.

Jelly-roll fold

The jelly-roll fold is a characteristic structural fold of the capsid proteins that comprise the icosahedral capsids of a variety of viruses including most of the picorna-like viruses.

Maximum likelihood

Generally, maximum likelihood is the statistical methodology used to fit a mathematical model of a process to the available data. In the context of phylogenetic analysis, maximum-likelihood methods use evolution models of various degrees of complexity to infer probability distributions for all possible topologies of a phylogenetic tree and, accordingly, assign likelihood values to particular topologies.

Clade

A clade is a taxonomic group that consists of a single common ancestor and all its descendants; in a phylogenetic tree, a clade is always either a terminal branch or a compact subtree.

Horizontal virus transfer

(HVT). Cross-species virus transmission and adaptation to a new host.

Retroelements

Diverse genetic elements that encode a reverse transcriptase and, accordingly, replicate through a genetic cycle that includes a step of DNA synthesis on a RNA template.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koonin, E., Wolf, Y., Nagasaki, K. et al. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol 6, 925–939 (2008). https://doi.org/10.1038/nrmicro2030

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing