Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of porcine aldehyde reductase holoenzyme

Abstract

Aldehyde reductase, a member of the aldo-keto reductase superfamily, catalyzes the NADPH-dependent reduction of a variety of aldehydes to their corresponding alcohols. The structure of porcine aldehyde reductase–NADPH binary complex has been determined by X-ray diffraction methods and refined to a crystallographic R-factor of 0.20 at 2.4 Å resolution. The tertiary structure of aldehyde reductase is similar to that of aldose reductase and consists of an α/β-barrel with the active site located at the carboxy terminus of the strands of the barrel. Unlike aldose reductase, the Nε2 of the imidazole ring of His 113 in aldehyde reductase interacts, through a hydrogen bond, with the amide group of the nicotinamide ring of NADPH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Flynn, T.G. Aldehyde reductases: monomeric NADPH-dependent oxidoreductases with multifunctional potential. Biochem. Pharmac. 31, 2705–2712 (1982).

    Article  CAS  Google Scholar 

  2. Wermuth, B. in Enzymology and molecular biology of carbonyl metabolism (Eds Flynn, T G. & Weiner, H.) 209–230 (Alan, R. Liss, New York; 1985).

    Google Scholar 

  3. Bohren, K.M., Bullock, B., Wermuth, B. & Gabbay, K.H. The aldo-keto reductase superfamily. J. biol. Chem. 264, 9547–9551 (1989).

    CAS  PubMed  Google Scholar 

  4. Kinoshita, J.H. & Nishimura, C. The involvement of aldose reductase in diabetic complications. Diabetes metab. Rev. 4, 323–337 (1988).

    Article  CAS  Google Scholar 

  5. Srivastava, S.K., Petrash, J.M., Sadana, I.J., Ansari, N.H. & Partridge, C.A. Susceptibility of aldehyde and aldose reductases of human tissues to aldose redutase inhibitors. Curr. Eye Res. 83, 407–410 (1982).

    Article  Google Scholar 

  6. Spielberg, S.P., Shear, N.H., Cannon, M., Huston, N.J. & Gunderson, K. In-vitro assessment of a hypersensitivity syndrome associated with sorbinil. Anal. intern. Med. 114, 720–724 (1991).

    Article  CAS  Google Scholar 

  7. Sarges, R. & Oates, P. Aldose reductase inhibitors: recent developments. J. Prog. Drug Res. 40, 99–161 (1993).

    CAS  Google Scholar 

  8. Rondeau, J.-M. et al. Novel NADPH binding ___domain revealed by the crystal structure of aldose reductase. Nature 355, 469–472 (1992).

    Article  CAS  Google Scholar 

  9. Wilson, D.K., Bohren, K.M., Gabbay, K.H. & Quiocho, F.A. An unlikely sugar substrate site in the 1.65 Å structure of human aldose reductase holoenzyme implicated in diabetic complications. Science 257, 81–84 (1992).

    Article  CAS  Google Scholar 

  10. Grimshaw, C.E., Shahbaz, M. & Putney, C.G. Mechanistic basis for non-linear kinetics of aldehyde reduction catalyzed by aldose reductase. Biochemistry 29, 9947–9955 (1990).

    Article  CAS  Google Scholar 

  11. Kubiseski, T.J., Hyndman, D.J., Morjana, N.A. & Flynn, T.G. Studies on pig muscle aldose reductase. Kinetic mechanism and evidence for a slow conformational change upon coenzyme binding. J. biol. Chem. 267, 6510–6517 (1992).

    CAS  PubMed  Google Scholar 

  12. Kubiseski, T.J., Green, N.C., Borhani, D.W. & Flynn, T.G. Studies on pig aldose reductase. Identification of an essential arginine in the primary and tertiary structure of the enzyme. J. biol. Chem. 2183–2188 (1994).

  13. Harrison, D.H., Bohren, K.M., Ringe, D., Petsko, G.A. & Gabbay, K.H. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cocodylate, and glucose 6-phosphate. Biochemistry 33, 2011–2020 (1994).

    Article  CAS  Google Scholar 

  14. El-Kabbani, O. et al Structures of human and porcine aldehyde reductase: an enzyme implicated in diabetic complications. Acta Crystallogr. D50, 859–868 (1994).

    CAS  Google Scholar 

  15. Farber, G.K. & Petsko, G.A. The evolution of α/β barrel enzymes. Trends Biochem. Sci. 15, 228–234 (1990).

    Article  CAS  Google Scholar 

  16. Wermuth, B. Enzymology and Molecular Biology of Carbonyl Metabolism (Eds Weiner, H. & Wermuth, B.) 261–274 (Alan Liss, New York; 1992).

    Google Scholar 

  17. Flynn, T.G., Shyres, J. & Walton, D.J. Properties of the nicotinamide adenine dinucleotide phosphate dependent aldehyde reductase from pig kidney. J. biol. Chem. 250, 2933–2940 (1975).

    CAS  PubMed  Google Scholar 

  18. Feldman, H.B. et al. Stereospecificity of the hydrogen transfer catalyzed by human placental aldose reductase. Biochim. biophys. Acta. 480, 14–20 (1977).

    Article  CAS  Google Scholar 

  19. Bohren, K.M. et al Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry 3, 2021–2032 (1994).

    Article  Google Scholar 

  20. Tarle, I., Borhani, D.W., Wilson, D.K., Quiocho, F.A. & Petrash, J.M. Probing the active site of human aldose reductase: site directed mutagenesis of Asp-43, Tyr-48, Lys-77 and His-110. J. biol. Chem. 268, 25687–25693 (1993).

    CAS  PubMed  Google Scholar 

  21. Lui, S.-Q., Bhatnagar, A. & Srivastava, S.K. Bovine lens aldose reductase: pH dependance of steady-state kinetic parameters and nucleotide binding. J. biol. Chem. 268, 25494–25499 (1993).

    Google Scholar 

  22. Ring, M. & Huber, R.E. Multiple replacements establish the importance of tyrosine-503 in β-galactosidase (Escherichia coli). Arch. biochem. Biophys. 283, 342–350 (1990).

    Article  CAS  Google Scholar 

  23. Kuliopulos, A., Mildvan, A.S., Shortle, D. & Talalay, P. Kinetic and ultraviolet spectroscopic studies of active-site mutants of Δ-3-ketosteroid isomerase. Biochemistry 28, 149–159 (1989).

    Article  CAS  Google Scholar 

  24. Kuliopulos, A., Mullen, G.P., Xue, L. & Mildvan, A.S. Stereochemistry of the concerted enolization catalyzed by Δ-3-ketosteroid isomerase. Biochemistry 30, 3169–3178 (1991).

    Article  CAS  Google Scholar 

  25. Davidson, W.S. & Flynn, T.G. Kinetics and mechanism of aldehyde reductase from pig kidney. Biochem. J. 177, 595–601 (1979).

    Article  CAS  Google Scholar 

  26. Grimshaw, C.E. Aldose reductase: model for a new paradigm of enzymic perfection in detoxification catalysts. Biochemistry 31, 10139–10145 (1992).

    Article  CAS  Google Scholar 

  27. Kubiseski, T.J. & Flynn, T.G. Studies on aldose reductase: probing the role of R268 in human aldose reductase by site directed mutagenesis. J. biol. Chem. 270, 16911–16917.

  28. Wilson, D.K., Tarle, I., Petrash, J.M. & Quiocho, F.A. Refined 1.8 Å structure of human aldose reductase complexed with the potent inhibitor zopolrestat. Proc. natn. Acad. Sci. U.S.A. 90, 9847–9851 (1993).

    Article  CAS  Google Scholar 

  29. Feather, M.S., Flynn, T.G., Munro, K.A., Kubiseski, T.J. & Walton, D.J. Catalysis of reduction of carbohydrate 2-oxoaldehydes (osones) by mammalian aldose reductase and aldehyde reductase. Biochim. biophys. Acta., in the press.

  30. Cromlish, J.A. & Flynn, T.G. Pig muscle aldehyde reductase. Identity of pig muscle aldehyde reductase with pig lens aldose reductase and with low Km aldehyde reductase of pig brain and pig kidney. J. biol. Chem. 258, 3583–3586 (1983).

    CAS  PubMed  Google Scholar 

  31. McPherson, A. Crystallization of macromolecules: general principiles. Meth. Enzymol. 114, 112–120 (1985).

    Article  CAS  Google Scholar 

  32. Messerschmidt, A. & Pflugrath, J.W. Crystal orientation and x-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J. appl. Crystallogr. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  33. Hammersley, A.P., Svensson, S.O. & Thompson, A. Calibration and correction of spatial distortions in 2D detector systems. Nucl. Instr. Meth. A346, 312–322 (1994).

    Article  Google Scholar 

  34. Otwinowski, Z. in Proc. CCP4 Study Weekend, 29–30 Jan 1991. Data collection and processing (Eds Sawyer, L., Issacs, N. & Burley, S.) 56–62 (SERC Daresbury Laboratory, U.K; 1993).

    Google Scholar 

  35. Collaborative computational project, number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  36. Brünger, A.T., Krukowski, A. & Erickson, J. Slow-cooling protocol for crystallographic refinement by simulated annealing. Acta. Crystallogr. A46, 585–593 (1990).

    Article  Google Scholar 

  37. Jones, A.T. A graphics model building and refinement system for macromolecules. J. Appl. Cryst. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  38. Luzzati, V. Traitement statistique des erreurs dans las détérmination des structures cristallines. Acta Crystallogr. 5, 802–810 (1952).

    Article  Google Scholar 

  39. Carson, M. & Bugg, C.E. Algorithm for ribbon models of proteins. J. molec. Graphics 4, 121–122 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Kabbani, O., Judge, K., Ginell, S. et al. Structure of porcine aldehyde reductase holoenzyme. Nat Struct Mol Biol 2, 687–692 (1995). https://doi.org/10.1038/nsb0895-687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0895-687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing