Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE LYMPHOBLASTIC LEUKEMIA

The RNA helicases DDX19A/B modulate selinexor sensitivity by regulating MCL1 mRNA nuclear export in leukemia cells

Abstract

Selinexor, a first-in-class exportin1 (XPO1) inhibitor, is an attractive anti-tumor agent because of its unique mechanisms of action; however, its dose-dependent toxicity and lack of biomarkers preclude its wide use in clinical applications. To identify key molecules/pathways regulating selinexor sensitivity, we performed genome-wide CRISPR/Cas9 dropout screens using two B-ALL lines. We identified, for the first time, that paralogous DDX19A and DDX19B RNA helicases modulate selinexor sensitivity by regulating MCL1 mRNA nuclear export. While single depletion of either DDX19A or DDX19B barely altered MCL1 protein levels, depletion of both significantly attenuated MCL1 mRNA nuclear export, reducing MCL1 protein levels. Importantly, combining selinexor treatment with depletion of either DDX19A or DDX19B markedly induced intrinsic apoptosis of leukemia cells, an effect rescued by MCL1 overexpression. Analysis of Depmap datasets indicated that a subset of T-ALL lines expresses minimal DDX19B mRNA levels. Moreover, we found that either selinexor treatment or DDX19A depletion effectively induced apoptosis of T-ALL lines expressing low DDX19B levels. We conclude that XPO1 and DDX19A/B coordinately regulate cellular MCL1 levels and propose that DDX19A/B could serve as biomarkers for selinexor treatment. Moreover, pharmacological targeting of DDX19 paralogs may represent a potential strategy to induce intrinsic apoptosis in leukemia cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genome-wide CRISPR-Cas9 screens identify DDX19 paralogs as key modulators of selinexor sensitivity.
Fig. 2: Co-depletion of DDX19A and DDX19B decreases MCL1 protein levels and induces intrinsic apoptosis.
Fig. 3: DDX19 paralogs regulate nucleocytoplasmic transport of MCL1 mRNA.
Fig. 4: Selinexor treatment synergizes with loss of either DDX19A or DDX19B to induce intrinsic apoptosis by reducing MCL1 levels.
Fig. 5: DDX19A/B levels could serve as a biomarker for selinexor sensitivity, independent of TP53 status.
Fig. 6: Proposed model of the synthetic lethal interaction between selinexor treatment and loss of a DDX19 paralog.

Similar content being viewed by others

Data availability

The processed data of CRISPR/Cas9 screens are available as a supplemental table. Raw data will be provided upon request.

References

  1. Azmi AS, Uddin MH, Mohammad RM. The nuclear export protein XPO1 - from biology to targeted therapy. Nat Rev Clin Oncol. 2021;18:152–69.

    Article  CAS  PubMed  Google Scholar 

  2. Balasubramanian SK, Azmi AS, Maciejewski J. Selective inhibition of nuclear export: a promising approach in the shifting treatment paradigms for hematological neoplasms. Leukemia. 2022;36:601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nachmias B, Schimmer AD. Targeting nuclear import and export in hematological malignancies. Leukemia. 2020;34:2875–86.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Azizian NG, Li Y. XPO1-dependent nuclear export as a target for cancer therapy. J Hematol Oncol. 2020;13:61.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH. Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem. 2007;282:5101–5.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu ZC, Liu JW, Yang C, Zhao M, Xiong ZQ. XPO1 inhibitor KPT-330 synergizes with Bcl-xL inhibitor to induce cancer cell apoptosis by perturbing rRNA processing and Mcl-1 protein synthesis. Cell Death Dis. 2019;10:395.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Azmi AS, Aboukameel A, Bao B, Sarkar FH, Philip PA, Kauffman M, et al. Selective inhibitors of nuclear export block pancreatic cancer cell proliferation and reduce tumor growth in mice. Gastroenterology. 2013;144:447–56.

    Article  CAS  PubMed  Google Scholar 

  8. Etchin J, Sanda T, Mansour MR, Kentsis A, Montero J, Le BT, et al. KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia. Br J Haematol. 2013;161:117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chari A, Vogl DT, Gavriatopoulou M, Nooka AK, Yee AJ, Huff CA, et al. Oral Selinexor-Dexamethasone for triple-class refractory multiple myeloma. N. Engl J Med. 2019;381:727–38.

    Article  CAS  PubMed  Google Scholar 

  10. Kalakonda N, Maerevoet M, Cavallo F, Follows G, Goy A, Vermaat JSP, et al. Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): a single-arm, multinational, multicentre, open-label, phase 2 trial. Lancet Haematol. 2020;7:e511–22.

    Article  PubMed  Google Scholar 

  11. Li W, Koster J, Xu H, Chen CH, Xiao T, Liu JS, et al. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol. 2015;16:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colic M, Wang G, Zimmermann M, Mascall K, McLaughlin M, Bertolet L, et al. Identifying chemogenetic interactions from CRISPR screens with drugZ. Genome Med. 2019;11:52.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lin DH, Correia AR, Cai SW, Huber FM, Jette CA, Hoelz A. Structural and functional analysis of mRNA export regulation by the nuclear pore complex. Nat Commun. 2018;9:2319.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tieg B, Krebber H. Dbp5 - from nuclear export to translation. Biochim Biophys Acta. 2013;1829:791–8.

    Article  CAS  PubMed  Google Scholar 

  15. Nabet B, Ferguson FM, Seong BKA, Kuljanin M, Leggett AL, Mohardt ML, et al. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules. Nat Commun. 2020;11:4687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakao F, Setoguchi K, Semba Y, Yamauchi T, Nogami J, Sasaki K, et al. Targeting a mitochondrial E3 ubiquitin ligase complex to overcome AML cell-intrinsic Venetoclax resistance. Leukemia 2023;37:1028–38.

  17. Walensky LD. Targeting BAX to drug death directly. Nat Chem Biol. 2019;15:657–65.

    Article  CAS  PubMed  Google Scholar 

  18. Wickramasinghe VO, Laskey RA. Control of mammalian gene expression by selective mRNA export. Nat Rev Mol Cell Biol. 2015;16:431–42.

    Article  CAS  PubMed  Google Scholar 

  19. Kohler A, Hurt E. Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol. 2007;8:761–73.

    Article  PubMed  Google Scholar 

  20. Kwanten B, Deconick T, Walker C, Wang F, Landesman Y, Daelemans D. E3 ubiquitin ligase ASB8 promotes selinexor-induced proteasomal degradation of XPO1. Biomed Pharmacother. 2023;160:114305.

    Article  CAS  PubMed  Google Scholar 

  21. Nijhawan D, Fang M, Traer E, Zhong Q, Gao W, Du F, et al. Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev. 2003;17:1475–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, et al. Dissecting eIF4E action in tumorigenesis. Genes Dev. 2007;21:3232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knight JRP, Alexandrou C, Skalka GL, Vlahov N, Pennel K, Officer L, et al. MNK inhibition sensitizes. Cancer Discov. 2021;11:1228–47.

    Article  CAS  PubMed  Google Scholar 

  24. Luedtke DA, Su Y, Liu S, Edwards H, Wang Y, Lin H, et al. Inhibition of XPO1 enhances cell death induced by ABT-199 in acute myeloid leukaemia via Mcl-1. J Cell Mol Med. 2018;22:6099–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lapalombella R, Sun Q, Williams K, Tangeman L, Jha S, Zhong Y, et al. Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood. 2012;120:4621–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol. 2006;175:415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Topisirovic I, Siddiqui N, Lapointe VL, Trost M, Thibault P, Bangeranye C, et al. Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP. EMBO J. 2009;28:1087–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Volpon L, Culjkovic-Kraljacic B, Sohn HS, Blanchet-Cohen A, Osborne MJ, Borden KLB. A biochemical framework for eIF4E-dependent mRNA export and nuclear recycling of the export machinery. RNA. 2017;23:927–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell. 2012;22:209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tomoyasu C, Imamura T, Tomii T, Yano M, Asai D, Goto H, et al. Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes. Int J Hematol. 2018;108:312–8.

    Article  CAS  PubMed  Google Scholar 

  31. Sasaki K, Yamauchi T, Semba Y, Nogami J, Imanaga H, Terasaki T, et al. Genome-wide CRISPR-Cas9 screen identifies rationally designed combination therapies for CRLF2-rearranged Ph-like ALL. Blood. 2022;139:748–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bernadin O, Amirache F, Girard-Gagnepain A, Moirangthem RD, Levy C, Ma K, et al. Baboon envelope LVs efficiently transduced human adult, fetal, and progenitor T cells and corrected SCID-X1 T-cell deficiency. Blood Adv. 2019;3:461–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamauchi T, Masuda T, Canver MC, Seiler M, Semba Y, Shboul M, et al. Genome-wide CRISPR-Cas9 screen identifies leukemia-specific dependence on a Pre-mRNA metabolic pathway regulated by DCPS. Cancer Cell. 2018;33:386–400.e385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Malone CF, Dharia NV, Kugener G, Forman AB, Rothberg MV, Abdusamad M, et al. Selective modulation of a pan-essential protein as a therapeutic strategy in cancer. Cancer Discov. 2021;11:2282–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Department of Medicine and Biosystemic Science and the Division of Precision Medicine at Kyushu University for assistance and helpful discussion and Elise Lamar for critical reading of the manuscript. This work is supported in part by a Grant-in-Aid for Young Scientists (18K16089) (to YS), a Grant-in-Aid for Young Scientists (19K17859), a Research Grant from the KANAE Foundation, the MSD Life Science Foundation, the Yasuda Medical Foundation, the Mochida Memorial Foundation for Medical and Pharmaceutical Research, the Shinnihon Foundation of Advanced Medical Treatment Research, the Takeda Science Foundation (to TY), a Grant-in-Aid for Scientific Research (C)(23K07816) (to KS), a Grant-in-Aid for Young Scientists (22K16323) (to SH), a Grant-in-Aid for Scientific Research (S)(16H06391) (to K. Akashi), a Grant-in-Aid for Scientific Research (A) (17H01567, 20H00540), an AMED under grant number 18063889 and a Grant-in-Aid for Scientific Research (S)(20H05699) (to TM).

Author information

Authors and Affiliations

Authors

Contributions

TT, YS, TY, and TM designed CRISPR-Cas9 screen experiments. TT, YS, KS, TY, HI, TS. K. Akashi and TM reviewed CRISPR screen data. TT, KS, YS, TY, KS, SH, HI, and FN executed the CRISPR-Cas9 and cell biology experiments. K. Akahane and TI provided KOPN49 cells. TT and TM wrote the manuscript with help from all the authors.

Corresponding author

Correspondence to Takahiro Maeda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All experiments involving human material (leukemia cell lines) were performed in accordance with the Declaration of Helsinki under an approved Kyushu university institutional research protocol (#4-142). Informed consent from human research participants: not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terasaki, T., Semba, Y., Sasaki, K. et al. The RNA helicases DDX19A/B modulate selinexor sensitivity by regulating MCL1 mRNA nuclear export in leukemia cells. Leukemia 38, 1918–1928 (2024). https://doi.org/10.1038/s41375-024-02343-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-024-02343-2

Search

Quick links