Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Nudt15-mediated inflammatory signaling contributes to divergent outcomes in leukemogenesis and hematopoiesis

Abstract

NUDT15 encodes nucleotide triphosphate diphosphatase that is responsible for metabolizing purine analog drugs, and its genetic mutation results in severe side effects from thiopurine therapy. However, the functions of Nudt15 in leukemic stem cells (LSCs) and hematopoietic stem cells (HSCs) remain unknown. Here we reveal the Nudt15-regulating self-renewal of both mouse LSCs and HSCs. Our data show that Nudt15 negatively regulates murine leukemogenesis and its deficiency prolongs the survival of murine AML recipients by impairing LSC self-renewal, while Nudt15 ablation markedly enhances mouse HSC regenerative potential and self-renewal. Mechanistically, Nudt15 modulates inflammatory signaling in mouse LSCs and HSCs, leading to divergent self-renewal outcomes. Nudt15 depletion inhibits mouse LSC self-renewal by downregulating Ifi30, resulting in elevating intracellular ROS level. Gata2, a key regulator, is required for Nudt15-mediating inflammatory signaling in mouse HSCs. Collectively, our results present new crucial roles of Nudt15 in maintaining the functions of mouse LSC and HSC through inflammatory signaling and have a new insight into clinical implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NUDT15 is required for maintaining AML LSC capacity.
Fig. 2: Nudt15 regulates inflammatory signaling pathways in LSCs.
Fig. 3: Ifi30/ROS signaling axis modulates Nudt15 functions on LSC self-renewal.
Fig. 4: Nudt15 is dispensable for normal hematopoiesis under homeostatic conditions.
Fig. 5: Nudt15 ablation enhances the self-renewal capacity of HSCs under stress conditions.
Fig. 6: Nudt15 negatively regulates HSC self-renewal through TNF-α/NFkB signaling pathway.
Fig. 7: Gata2 is required for Nudt15-regulating TNF-α/NFkB signaling in HSCs.

Similar content being viewed by others

Data availability

RNA-seq data that support the findings of this study are available in the National Center for Biotechnology information’s Gene Expression Omnibus, with accession number GSE269233.

References

  1. Takagi Y, Setoyama D, Ito R, Kamiya H, Yamagata Y, Sekiguchi M. Human MTH3 (NUDT18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates: comparison with MTH1 and MTH2. J Biol Chem. 2012;287:21541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hori M, Satou K, Harashima H, Kamiya H. Suppression of mutagenesis by 8-hydroxy-2’-deoxyguanosine 5’-triphosphate (7,8-dihydro-8-oxo-2’-deoxyguanosine 5’-triphosphate) by human MTH1, MTH2, and NUDT5. Free Radic Biol Med. 2010;48:1197–201.

    Article  CAS  PubMed  Google Scholar 

  3. Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, Zhao X, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet. 2016;48:367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kakuta Y, Kawai Y, Okamoto D, Takagawa T, Ikeya K, Sakuraba H, et al. NUDT15 codon 139 is the best pharmacogenetic marker for predicting thiopurine-induced severe adverse events in Japanese patients with inflammatory bowel disease: a multicenter study. J Gastroenterol. 2018;53:1065–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nishii R, Moriyama T, Janke LJ, Yang W, Suiter CC, Lin TN, et al. Preclinical evaluation of NUDT15-guided thiopurine therapy and its effects on toxicity and antileukemic efficacy. Blood. 2018;131:2466–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tatsumi G, Kawahara M, Imai T, Nishishita-Asai A, Nishida A, Inatomi O, et al. Thiopurine-mediated impairment of hematopoietic stem and leukemia cells in Nudt15R138C knock-in mice. Leukemia. 2020;34:882–94.

    Article  CAS  PubMed  Google Scholar 

  7. Yamashita N, Kawahara M, Imai T, Tatsumi G, Asai-Nishishita A, Andoh A. Loss of Nudt15 thiopurine detoxification increases direct DNA damage in hematopoietic stem cells. Sci Rep. 2023;13:11908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stubbins RJ, Platzbecker U, Karsan A. Inflammation and myeloid malignancy: quenching the flame. Blood. 2022;140:1067–74.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou X, Zhou S, Li B, Li Q, Gao L, Li D, et al. Transmembrane TNF-α preferentially expressed by leukemia stem cells and blasts is a potent target for antibody therapy. Blood. 2015;126:1433–42.

    Article  CAS  PubMed  Google Scholar 

  10. Xie X, Zhang W, Zhou X, Xu B, Wang H, Qiu Y, et al. Low doses of IFN-γ maintain self-renewal of leukemia stem cells in acute myeloid leukemia. Oncogene. 2023;42:3657–69.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu C, Chen X, Guan G, Zou C, Guo Q, Cheng P, et al. IFI30 is a novel immune-related target with predicting value of prognosis and treatment response in glioblastoma. Onco Targets Ther. 2020;13:1129–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cacialli P, Mahony CB, Petzold T, Bordignon P, Rougemont AL, Bertrand JY. A connexin/ifi30 pathway bridges HSCs with their niche to dampen oxidative stress. Nat Commun. 2021;12:4484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lackman RL, Cresswell P. Exposure of the promonocytic cell line THP-1 to Escherichia coli induces IFN-gamma-inducible lysosomal thiol reductase expression by inflammatory cytokines. J Immunol. 2006;177:4833–40.

    Article  CAS  PubMed  Google Scholar 

  14. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS, et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell. 2008;13:483–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akiyama S, Matsuoka K, Fukuda K, Hamada S, Shimizu M, Nanki K, et al. Long-term effect of NUDT15 R139C on hematologic indices in inflammatory bowel disease patients treated with thiopurine. J Gastroenterol Hepatol. 2019;34:1751–7.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou X, Cheng L, Wang Y, Gou H, Ju K, Lan T, et al. Effect of NUDT15 polymorphisms on early hematological safety of low-dose azathioprine in Chinese patients with pemphigus vulgaris: a prospective cohort study. J Dermatol. 2022;49:402–10.

    Article  CAS  PubMed  Google Scholar 

  17. Isono T, Hira D, Ikeda Y, Kawahara M, Noda S, Nishida A, et al. Single-nucleotide polymorphisms, c.415C > T (Arg139Cys) and c.416G > A (Arg139His), in the NUDT15 gene are associated with thiopurine-induced leukopenia. Biol Pharm Bull. 2023;46:412–8.

    Article  CAS  PubMed  Google Scholar 

  18. Wilson NK, Foster SD, Wang X, Knezevic K, Schütte J, Kaimakis P, et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell. 2010;7:532–44.

    Article  CAS  PubMed  Google Scholar 

  19. Guo G, Luc S, Marco E, Lin TW, Peng C, Kerenyi MA, et al. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell. 2013;13:492–505.

    Article  CAS  PubMed  Google Scholar 

  20. Takai J, Shimada T, Nakamura T, Engel JD, Moriguchi T. Gata2 heterozygous mutant mice exhibit reduced inflammatory responses and impaired bacterial clearance. iScience. 2021;24:102836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hou Y, Li W, Sheng Y, Li L, Huang Y, Zhang Z, et al. The transcription factor Foxm1 is essential for the quiescence and maintenance of hematopoietic stem cells. Nat Immunol. 2015;16:810–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sheng Y, Yu C, Liu Y, Hu C, Ma R, Lu X, et al. FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML. Nat Commun. 2020;11:928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–60.

    Article  CAS  PubMed  Google Scholar 

  24. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 2007;1:101–12.

    Article  CAS  PubMed  Google Scholar 

  25. Sykes SM, Lane SW, Bullinger L, Kalaitzidis D, Yusuf R, Saez B, et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell. 2011;146:697–708.

    Article  CAS  PubMed  Google Scholar 

  26. Schepers H, van Gosliga D, Wierenga AT, Eggen BJ, Schuringa JJ, Vellenga E. STAT5 is required for long-term maintenance of normal and leukemic human stem/progenitor cells. Blood. 2007;110:2880–8.

    Article  CAS  PubMed  Google Scholar 

  27. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441:475–82.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature. 2006;441:518–22.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Z, Zhu P, Zhou Y, Sheng Y, Hong Y, Xiang D, et al. A novel slug-containing negative-feedback loop regulates SCF/c-Kit-mediated hematopoietic stem cell self-renewal. Leukemia. 2017;31:403–13.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Li L, Wu C, Yin G, Zhu P, Zhou Y, et al. Inhibition of Slug effectively targets leukemia stem cells via the Slc13a3/ROS signaling pathway. Leukemia. 2020;34:380–90.

    Article  CAS  PubMed  Google Scholar 

  31. de Bruin AM, Demirel Ö, Hooibrink B, Brandts CH, Nolte MA. Interferon-γ impairs proliferation of hematopoietic stem cells in mice. Blood. 2013;121:3578–85.

    Article  PubMed  Google Scholar 

  32. Yamashita M, Passegué E. TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell. 2019;25:357–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kagoya Y, Yoshimi A, Kataoka K, Nakagawa M, Kumano K, Arai S, et al. Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity. J Clin Invest. 2014;124:528–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Corradi G, Bassani B, Simonetti G, Sangaletti S, Vadakekolathu J, Fontana MC, et al. Release of IFNγ by acute myeloid leukemia cells remodels bone marrow immune microenvironment by inducing regulatory T cells. Clin Cancer Res. 2022;28:3141–55.

    Article  CAS  PubMed  Google Scholar 

  35. Tsimberidou AM, Estey E, Wen S, Pierce S, Kantarjian H, Albitar M, et al. The prognostic significance of cytokine levels in newly diagnosed acute myeloid leukemia and high-risk myelodysplastic syndromes. Cancer. 2008;113:1605–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China (Grant No. 82070106), the Natural Science Foundation of Shanghai (Grant No. 18ZR1414900), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and Special Project of Science and Technology Plan of Shaoxing Science and Technology Bureau (Grant No. 2020B33004).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. was responsible for experimental design, data analysis, and manuscript preparation; J.C.W, Y.Z., L.L., L.W., S.S, B.W., and G.W. performed experiments.

Corresponding author

Correspondence to Zhonghui Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was conducted in accordance with the Declaration of Helsinki. Human samples were obtained from the patients and healthy donors after acquiring written informed consent. All experimental protocols were approved by the Ethics Committee of Shanghai University (Approval number: ECSHU 2020-047).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, Y., Li, L. et al. Nudt15-mediated inflammatory signaling contributes to divergent outcomes in leukemogenesis and hematopoiesis. Leukemia 38, 1958–1970 (2024). https://doi.org/10.1038/s41375-024-02352-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-024-02352-1

This article is cited by

Search

Quick links