Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Astrocytes release ATP/ADP and glutamate in flashes via vesicular exocytosis

Abstract

Astrocytes regulate brain functions through gliotransmitters like ATP/ADP and glutamate, but their release patterns and mechanisms remain controversial. Here, we visualized ATP/ADP and glutamate response following astrocyte activation and investigated their mechanisms in vivo. Employing cOpn5-mediated optogenetic stimulation, genetically encoded fluorescent sensors, and two-photon imaging, we observed ATP/ADP released as temporally prolonged and spatially extended flashes that later converted to adenosine. This release occurs via Ca2+ and VNUT-dependent vesicular exocytosis. Additionally, astrocytes also release glutamate in flashes through TeNT-sensitive exocytosis, independent of ATP/ADP release. ATP/ADP released by astrocytes triggers further ATP/ADP release from microglia through P2Y12- and VNUT-dependent mechanisms. VNUT in astrocytes and microglia also contributes to ATP/ADP release under LPS-induced brain inflammation. These findings establish Ca2+-dependent vesicular exocytosis as a key mode of action, reveal intricate astrocyte-microglia interactions, and suggest a role for gliotransmission in brain inflammation. Furthermore, the methodologies may provide valuable tools for deciphering glial physiology and pathophysiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: cOpn5 optogenetics elicits Ca2+ signals in cortical astrocytes and prompts ATP/ADP release.
Fig. 2: ATP/ADP release occurs via VNUT-dependent vesicular exocytosis.
Fig. 3: Astrocytes release glutamate through TeNT-sensitive exocytosis.
Fig. 4: Microglia amplify extracellular ATP/ADP signals by astrocytes.
Fig. 5: VNUT in astrocytes and microglia contributes to LPS-induced ATP/ADP release.

Similar content being viewed by others

Data availability

All data necessary to assess the conclusions in this manuscript are provided in the main text or the supplemental information. Any additional information is available from the corresponding authors upon request.

Code availability

All codes necessary to assess the conclusions in this manuscript are provided in the main text or the supplemental information. Any additional information is available from the corresponding authors upon request.

Materials availability

All unique reagents generated in this study are available from the lead contact upon reasonable request.

References

  1. Khakh BS, Deneen B. The Emerging Nature of Astrocyte Diversity. Annu Rev Neurosci. 2019;42:187–207.

    Article  CAS  PubMed  Google Scholar 

  2. Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC, Yu X, et al. Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence. Neuron. 2017;95:531–49.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vardjan N, Parpura V, Verkhratsky A, Zorec R. Gliocrine System: Astroglia as Secretory Cells of the CNS. Adv Exp Med Biol. 2019;1175:93–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parpura V, Zorec R. Gliotransmission: Exocytotic release from astrocytes. Brain Res Rev. 2010;63:83–92.

    Article  CAS  PubMed  Google Scholar 

  5. Harada K, Kamiya T, Tsuboi T. Gliotransmitter Release from Astrocytes: Functional, Developmental, and Pathological Implications in the Brain. Front Neurosci. 2015;9:499.

    PubMed  Google Scholar 

  6. Shen W, Nikolic L, Meunier C, Pfrieger F, Audinat E. An autocrine purinergic signaling controls astrocyte-induced neuronal excitation. Sci Rep. 2017;7:11280.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kofuji P, Araque A. Astrocytes and Behavior. Annu Rev Neurosci. 2021;44:49–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J, Tan Z, Zeng L, Zhang X, He Y, Gao W, et al. Heterosynaptic long-term depression mediated by ATP released from astrocytes. Glia. 2013;61:178–91.

    Article  PubMed  Google Scholar 

  9. Brandebura AN, Paumier A, Onur TS, Allen NJ. Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders. Nat Rev Neurosci. 2023;24:23–39.

    Article  CAS  PubMed  Google Scholar 

  10. McAlpine CS, Park J, Griciuc A, Kim E, Choi SH, Iwamoto Y, et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature. 2021;595:701–6.

  11. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB. ATP released from astrocytes mediates glial calcium waves. J Neurosci. 1999;19:520–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA. P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci. 2003;23:1320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, et al. Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol. 2007;9:945–53.

    Article  CAS  PubMed  Google Scholar 

  14. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001;4:702–10.

    Article  CAS  PubMed  Google Scholar 

  15. Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave. Nat Neurosci. 2016;19:182–9.

    Article  CAS  PubMed  Google Scholar 

  16. Tan Z, Liu Y, Xi W, Lou HF, Zhu L, Guo Z, et al. Glia-derived ATP inversely regulates excitability of pyramidal and CCK-positive neurons. Nat Commun. 2017;8:13772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Li L, Wu J, Zhu Z, Feng X, Qin L, et al. Activation of astrocytes in hippocampus decreases fear memory through adenosine A(1) receptors. Elife. 2020;9:e57155.

  18. Figueiredo M, Lane S, Stout RF Jr, Liu B, Parpura V, Teschemacher AG, et al. Comparative analysis of optogenetic actuators in cultured astrocytes. Cell Calcium. 2014;56:208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y. Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol. 2014;12:e1001747.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martín R, Bajo-Grañeras R, Moratalla R, Perea G, Araque A. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science. 2015;349:730–4.

    Article  PubMed  Google Scholar 

  21. Noh K, Cho WH, Lee BH, Kim DW, Kim YS, Park K, et al. Cortical astrocytes modulate dominance behavior in male mice by regulating synaptic excitatory and inhibitory balance. Nat Neurosci. 2023;26:1541–54.

    Article  CAS  PubMed  Google Scholar 

  22. Suadicani SO, Iglesias R, Wang J, Dahl G, Spray DC, Scemes E. ATP signaling is deficient in cultured Pannexin1-null mouse astrocytes. Glia. 2012;60:1106–16.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chu J, Yang J, Zhou Y, Chen J, Chen KH, Zhang C, et al. ATP-releasing SWELL1 channel in spinal microglia contributes to neuropathic pain. Sci Adv. 2023;9:eade9931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, et al. TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell. 2012;151:25–40.

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Vitery MDC, Chen J, Osei-Owusu J, Chu J, Qiu Z. Glutamate-Releasing SWELL1 Channel in Astrocytes Modulates Synaptic Transmission and Promotes Brain Damage in Stroke. Neuron. 2019;102:813–27.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci. 2004;7:613–20.

    Article  CAS  PubMed  Google Scholar 

  27. de Ceglia R, Ledonne A, Litvin DG, Lind BL, Carriero G, Latagliata EC, et al. Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. Nature. 2023;622:120–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sloan SA, Barres BA. Looks can be deceiving: reconsidering the evidence for gliotransmission. Neuron. 2014;84:1112–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Savtchouk I, Volterra A. Gliotransmission: Beyond Black-and-White. J Neurosci. 2018;38:14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dai R, Yu T, Weng D, Li H, Cui Y, Wu Z, et al. A neuropsin-based optogenetic tool for precise control of G(q) signaling. Sci China Life Sci. 2022;65:1271–84.

    Article  CAS  PubMed  Google Scholar 

  31. Wu Z, He K, Chen Y, Li H, Pan S, Li B, et al. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron. 2021;110:770–82.e5.

  32. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods. 2013;10:162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A, Müller JA, et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat Methods. 2018;15:936–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N, Melcer T, et al. Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement. Cell. 2018;174:59–71.e14.

    Article  CAS  PubMed  Google Scholar 

  35. Vaidyanathan TV, Collard M, Yokoyama S, Reitman ME, Poskanzer KE. Cortical astrocytes independently regulate sleep depth and duration via separate GPCR pathways. Elife. 2021;10:e63329.

  36. Nagai J, Rajbhandari AK, Gangwani MR, Hachisuka A, Coppola G, Masmanidis SC, et al. Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue. Cell. 2019;177:1280–92.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mahn M, Saraf-Sinik I, Patil P, Pulin M, Bitton E, Karalis N, et al. Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin. Neuron. 2021;109:1621–35.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stachniak TJ, Ghosh A, Sternson SM. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron. 2014;82:797–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, et al. Astrocytes control breathing through pH-dependent release of ATP. Science. 2010;329:571–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lezmy J, Arancibia-Cárcamo IL, Quintela-López T, Sherman DL, Brophy PJ, Attwell D. Astrocyte Ca(2+)-evoked ATP release regulates myelinated axon excitability and conduction speed. Science. 2021;374:eabh2858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, DelRosso NV, Vaidyanathan TV, Cahill MK, Reitman ME, Pittolo S, et al. Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology. Nat Neurosci. 2019;22:1936–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu Z, Cui Y, Wang H, Wu H, Wan Y, Li B, et al. Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor. Proc Natl Acad Sci USA. 2023;120:e2212387120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, Ikegami A, et al. Negative feedback control of neuronal activity by microglia. Nature. 2020;586:417–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science. 2020;369:eabb0556.

  45. Dosch M, Gerber J, Jebbawi F, Beldi G. Mechanisms of ATP Release by Inflammatory Cells. Int J Mol Sci. 2018;19:1222.

  46. Xiong Y, Sun S, Teng S, Jin M, Zhou Z. Ca(2+)-Dependent and Ca(2+)-Independent ATP Release in Astrocytes. Front Mol Neurosci. 2018;11:224.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992;359:832–5.

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Foran P, Fairweather NF, de Paiva A, Weller U, Dougan G, et al. A single mutation in the recombinant light chain of tetanus toxin abolishes its proteolytic activity and removes the toxicity seen after reconstitution with native heavy chain. Biochemistry. 1994;33:7014–20.

    Article  CAS  PubMed  Google Scholar 

  49. Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, et al. Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci USA. 2008;105:5683–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oya M, Kitaguchi T, Yanagihara Y, Numano R, Kakeyama M, Ikematsu K, et al. Vesicular nucleotide transporter is involved in ATP storage of secretory lysosomes in astrocytes. Biochem Biophys Res Commun. 2013;438:145–51.

    Article  CAS  PubMed  Google Scholar 

  51. Shinozaki Y, Nomura M, Iwatsuki K, Moriyama Y, Gachet C, Koizumi S. Microglia trigger astrocyte-mediated neuroprotection via purinergic gliotransmission. Sci Rep. 2014;4:4329.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Covelo A, Araque A. Neuronal activity determines distinct gliotransmitter release from a single astrocyte. Elife. 2018;7:e32237.

  53. Aggarwal A, Liu R, Chen Y, Ralowicz AJ, Bergerson SJ, Tomaska F, et al. Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission. Nat Methods. 2023;20:925–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Matejuk A, Ransohoff RM. Crosstalk Between Astrocytes and Microglia: An Overview. Front Immunol. 2020;11:1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Umpierre AD, Bystrom LL, Ying Y, Liu YU, Worrell G, Wu LJ. Microglial calcium signaling is attuned to neuronal activity in awake mice. Elife. 2020;9:e56502.

  56. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18:225–42.

    Article  CAS  PubMed  Google Scholar 

  57. Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H, et al. Microglia release ATP by exocytosis. Glia. 2013;61:1320–30.

    Article  PubMed  Google Scholar 

  58. Huang Y, Xu Z, Xiong S, Sun F, Qin G, Hu G, et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat Neurosci. 2018;21:530–40.

    Article  CAS  PubMed  Google Scholar 

  59. Hu NY, Chen YT, Wang Q, Jie W, Liu YS, You QL, et al. Expression Patterns of Inducible Cre Recombinase Driven by Differential Astrocyte-Specific Promoters in Transgenic Mouse Lines. Neurosci Bull. 2020;36:530–44.

    Article  PubMed  Google Scholar 

  60. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8:752–8.

    Article  CAS  PubMed  Google Scholar 

  61. Illes P, Rubini P, Ulrich H, Zhao Y, Tang Y. Regulation of Microglial Functions by Purinergic Mechanisms in the Healthy and Diseased CNS. Cells. 2020;9:1108.

  62. Kyrargyri V, Madry C, Rifat A, Arancibia-Carcamo IL, Jones SP, Chan VTT, et al. P2Y(13) receptors regulate microglial morphology, surveillance, and resting levels of interleukin 1β release. Glia. 2020;68:328–44.

    Article  PubMed  Google Scholar 

  63. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci. 2006;9:1512–9.

    Article  CAS  PubMed  Google Scholar 

  64. Lin R, Zhou Y, Yan T, Wang R, Li H, Wu Z, et al. Directed evolution of adeno-associated virus for efficient gene delivery to microglia. Nat Methods. 2022;19:976–85.

  65. Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1:14.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Colombo E, Farina C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol. 2016;37:608–20.

    Article  CAS  PubMed  Google Scholar 

  67. Wei C, Jiang W, Wang R, Zhong H, He H, Gao X, et al. Brain endothelial GSDMD activation mediates inflammatory BBB breakdown. Nature. 2024;629:893–900.

    Article  CAS  PubMed  Google Scholar 

  68. Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci. 2007;10:331–9.

    Article  CAS  PubMed  Google Scholar 

  69. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med. 2013;19:773–7.

    Article  CAS  PubMed  Google Scholar 

  70. Cho WH, Noh K, Lee BH, Barcelon E, Jun SB, Park HY, et al. Hippocampal astrocytes modulate anxiety-like behavior. Nat Commun. 2022;13:6536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lin S, Huang L, Luo ZC, Li X, Jin SY, Du ZJ, et al. The ATP Level in the Medial Prefrontal Cortex Regulates Depressive-like Behavior via the Medial Prefrontal Cortex-Lateral Habenula Pathway. Biol Psychiatry. 2022;92:179–92.

  72. Luo L. Principles of Neurobiology, 2nd ed. New York: Garland Science; 2020.

  73. Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R. Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. Embo j. 2016;35:239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pryazhnikov E, Khiroug L. Sub-micromolar increase in [Ca(2+)](i) triggers delayed exocytosis of ATP in cultured astrocytes. Glia. 2008;56:38–49.

    Article  PubMed  Google Scholar 

  75. Jaiswal JK, Andrews NW, Simon SM. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol. 2002;159:625–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xu H, Ren D. Lysosomal physiology. Annu Rev Physiol. 2015;77:57–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Upmanyu N, Jin J, Emde HV, Ganzella M, Bösche L, Malviya VN, et al. Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3. Neuron. 2022;110:1483–97.e7.

    Article  CAS  PubMed  Google Scholar 

  78. Allen NJ. Astrocyte regulation of synaptic behavior. Annu Rev Cell Dev Biol. 2014;30:439–63.

    Article  CAS  PubMed  Google Scholar 

  79. Xiong Y, Teng S, Zheng L, Sun S, Li J, Guo N, et al. Stretch-induced Ca(2+) independent ATP release in hippocampal astrocytes. J Physiol. 2018;596:1931–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC, et al. ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem. 2011;118:826–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen Y, Luan P, Liu J, Wei Y, Wang C, Wu R, et al. Spatiotemporally selective astrocytic ATP dynamics encode injury information sensed by microglia following brain injury in mice. Nat Neurosci. 2024;27:1522–33.

  82. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kinoshita M, Hirayama Y, Fujishita K, Shibata K, Shinozaki Y, Shigetomi E, et al. Anti-Depressant Fluoxetine Reveals its Therapeutic Effect Via Astrocytes. EBioMedicine. 2018;32:72–83.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kasymov V, Larina O, Castaldo C, Marina N, Patrushev M, Kasparov S, et al. Differential sensitivity of brainstem versus cortical astrocytes to changes in pH reveals functional regional specialization of astroglia. J Neurosci. 2013;33:435–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Beckel JM, Gómez NM, Lu W, Campagno KE, Nabet B, Albalawi F, et al. Stimulation of TLR3 triggers release of lysosomal ATP in astrocytes and epithelial cells that requires TRPML1 channels. Sci Rep. 2018;8:5726.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li D, Hérault K, Silm K, Evrard A, Wojcik S, Oheim M, et al. Lack of evidence for vesicular glutamate transporter expression in mouse astrocytes. J Neurosci. 2013;33:4434–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ma C, Li B, Silverman D, Ding X, Li A, Xiao C, et al. Microglia Regulate Sleep via Calcium-Dependent Modulation of Norepinephrine Transmission. Nat Neurosci. 2024;27:249–58.

  88. Wheeler MA, Clark IC, Lee HG, Li Z, Linnerbauer M, Rone JM, et al. Droplet-based forward genetic screening of astrocyte-microglia cross-talk. Science. 2023;379:1023–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guttenplan KA, Weigel MK, Prakash P, Wijewardhane PR, Hasel P, Rufen-Blanchette U, et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature. 2021;599:102–7.

  91. Ramamoorthy P, Whim MD. Trafficking and fusion of neuropeptide Y-containing dense-core granules in astrocytes. J Neurosci. 2008;28:13815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schwarz Y, Zhao N, Kirchhoff F, Bruns D. Astrocytes control synaptic strength by two distinct v-SNARE-dependent release pathways. Nat Neurosci. 2017;20:1529–39.

    Article  CAS  PubMed  Google Scholar 

  93. Wang H, Qian T, Zhao Y, Zhuo Y, Wu C, Osakada T, et al. A tool kit of highly selective and sensitive genetically encoded neuropeptide sensors. Science. 2023;382:eabq8173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lin R, Liang J, Wang R, Yan T, Zhou Y, Liu Y, et al. The Raphe Dopamine System Controls the Expression of Incentive Memory. Neuron. 2020;106:498–514.e8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W Ge (CIBR, Beijing) for comments, T Gao (Southern Medical University, Guangzhou, China) for Aldh1l1-CreERT2 mice, M Jing and W Sun (CIBR, Beijing) for advice on imaging, and Vector Core, Laboratory Animal Resource Center (LARC), and Optical Imaging Core at CIBR for technical supports.

Funding

This work was supported by the China Brain Initiative Grants (STI2030-Major Projects 2021ZD0202803 to ML and STI2030-Major Projects 2022ZD0208300 to ZW), Research Unit of Medical Neurobiology at Chinese Academy of Medical Sciences (2019RU003 to ML), New Cornerstone Investigator Program (to ML and YL), National Key R&D Program of China (2022YFE0108700 to YL), and Beijing Municipal Government (to ML).

Author information

Authors and Affiliations

Authors

Contributions

HL and ML conceived the study. ML supervised the project. HL performed surgeries, imaging, immunostaining, smFISH, and data analysis. YZ helped to perform surgeries and process data. PG performed RT-qPCR. RD, DW, FY, WW, and RL contributed to plasmid cloning and AAV packaging. YL and ZW provided GRAB sensors and the VNUT floxed mouse line. HL drafted the figures. HL and ML wrote the manuscript with inputs from all authors.

Corresponding author

Correspondence to Minmin Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhao, Y., Dai, R. et al. Astrocytes release ATP/ADP and glutamate in flashes via vesicular exocytosis. Mol Psychiatry 30, 2475–2489 (2025). https://doi.org/10.1038/s41380-024-02851-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-024-02851-8

This article is cited by

Search

Quick links