Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RVG engineered extracellular vesicles-transmitted miR-137 improves autism by modulating glucose metabolism and neuroinflammation

Abstract

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder. The microglia activation is a hallmark of ASD, which involves increased glycolysis. Elevated glycolysis regardless of oxygen availability, known as “Warburg effect”, is crucial to pathogenesis in neuropsychiatric disorders. Psychiatric risk gene MIR137 plays an important role in neurogenesis and neuronal maturation, but the impact on neuroinflammation and glucose metabolism remains obscure. Extracellular vesicles (EVs) can delivery miR-137 crossing the blood-brain barrier. Meanwhile, EVs can help miR-137 avoid being rapidly degraded by endogenous nucleases. Here, after first detecting miR-137 decreased both in the peripheral blood of individuals with ASD and the serum and cerebellum of BTBR mice, we demonstrated that microglia activation, the level of lactate and key enzymes (HK2, PKM2 and LDHA) involved in glycolysis were increased significantly in BTBR mice. Of particular note, EVs engineered by rabies virus glycoprotein (RVG) could promote the miR-137 (RVG-miR137-EVs) targeted to the brain accurately, and alleviated autism-like behaviors. Pro-inflammatory activation of BTBR mice was considerably inhibited by RVG-miR137-EVs via tail vein administration, accompanied by decreased lactate production. Mechanically, these effects were attributed to TLR4, the key target gene, which was regulated by miR-137. The TLR4/NF-κB pathway was inhibited, subsequently reducing HIF-1α and repressing the transcription of HK2, PKM2 and LDHA involved in glycolysis. Pharmacological inhibition of glycolysis and TLR4 attenuated microglial activation and lactate production, ultimately improved autism-like behaviors of BTBR mice. In conclusion, our results indicated that miR-137 could alleviate autism-like behaviors by HIF-1α-mediated adaptive metabolic changes in glycolysis and neuroinflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and characterization of engineered RVG-miR137-EVs.
Fig. 2: Engineered RVG-EVs efficiently deliver miR-137 into the brain and attenuate autism-like behaviors in BTBR mice.
Fig. 3: RVG-EVs mediated delivery of miR-137 regulates TLR4/NF-κB pathway to attenuate neuroinflammation.
Fig. 4: RVG-miR137-EVs reduce elevated glycolysis in the cerebellum of BTBR mice and microglia.
Fig. 5: RVG-miR137-EVs regulate neuroinflammation and glycolysis by interacting with TLR4 in BTBR mice and microglia.
Fig. 6: miR-137 regulates neuroinflammation and glycolysis by interacting with TLR4 in microglia.

Similar content being viewed by others

Data availability

Further information and request for resources and reagent should be directed to corresponding author on reasonable request.

References

  1. Lord C, Brugha TS, Charman T, Cusack J, Dumas G, Frazier T, et al. Autism spectrum disorder. Nat Rev Dis Primers. 2020;6:5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Edmonson C, Ziats MN, Rennert OM. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol Autism. 2014;5:3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, et al. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry. 2010;68:368–76.

    Article  PubMed  Google Scholar 

  4. Reed MD, Yim YS, Wimmer RD, Kim H, Ryu C, Welch GM, et al. IL-17a promotes sociability in mouse models of neurodevelopmental disorders. Nature. 2020;577:249–53.

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry. 2013;70:49–58.

    Article  PubMed  Google Scholar 

  6. Kaushik DK, Bhattacharya A, Mirzaei R, Rawji KS, Ahn Y, Rho JM, et al. Enhanced glycolytic metabolism supports transmigration of brain-infiltrating macrophages in multiple sclerosis. J Clin Invest. 2019;129:3277–92.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li Y, Lu B, Sheng L, Zhu Z, Sun H, Zhou Y, et al. Hexokinase 2-dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. J Neurochem. 2018;144:186–200.

    Article  CAS  PubMed  Google Scholar 

  8. Xie M, Yu Y, Kang R, Zhu S, Yang L, Zeng L, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun. 2016;7:13280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Traxler L, Herdy JR, Stefanoni D, Eichhorner S, Pelucchi S, Szucs A, et al. Warburg-like metabolic transformation underlies neuronal degeneration in sporadic Alzheimer’s disease. Cell Metab. 2022;34:1248–1263.e1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang ZP, Liu SF, Zhuang JL, Li LY, Li MM, Huang YL, et al. Role of microglial metabolic reprogramming in Parkinson’s disease. Biochem Pharmacol. 2023;213:115619.

    Article  CAS  PubMed  Google Scholar 

  11. Weissman JR, Kelley RI, Bauman ML, Cohen BH, Murray KF, Mitchell RL, et al. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis. PLoS ONE. 2008;3:e3815.

    Article  PubMed  PubMed Central  Google Scholar 

  12. El Fotoh W, El Naby SAA, Abd El Hady NMS. Autism spectrum disorders: the association with inherited metabolic disorders and some trace elements. a retrospective study. CNS Neurol Disord Drug Targets. 2019;18:413–20.

    Article  PubMed  Google Scholar 

  13. Khemakhem AM, Frye RE, El-Ansary A, Al-Ayadhi L, Bacha AB. Novel biomarkers of metabolic dysfunction is autism spectrum disorder: potential for biological diagnostic markers. Metab Brain Dis. 2017;32:1983–97.

    Article  CAS  PubMed  Google Scholar 

  14. Correia C, Coutinho AM, Diogo L, Grazina M, Marques C, Miguel T, et al. Brief report: High frequency of biochemical markers for mitochondrial dysfunction in autism: no association with the mitochondrial aspartate/glutamate carrier SLC25A12 gene. J Autism Dev Disord. 2006;36:1137–40.

    Article  PubMed  Google Scholar 

  15. Hagihara H, Catts VS, Katayama Y, Shoji H, Takagi T, Huang FL, et al. Decreased brain pH as a shared endophenotype of psychiatric disorders. Neuropsychopharmacology. 2018;43:459–68.

    Article  CAS  PubMed  Google Scholar 

  16. Liu S, Li A, Liu Y, Li J, Wang M, Sun Y, et al. MIR137 polygenic risk is associated with schizophrenia and affects functional connectivity of the dorsolateral prefrontal cortex. Psychol Med. 2020;50:1510–8.

    Article  PubMed  Google Scholar 

  17. Strazisar M, Cammaerts S, van der Ven K, Forero DA, Lenaerts AS, Nordin A, et al. MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets. Mol Psychiatry. 2015;20:472–81.

    Article  CAS  PubMed  Google Scholar 

  18. Duan J, Shi J, Fiorentino A, Leites C, Chen X, Moy W, et al. A rare functional noncoding variant at the GWAS-implicated MIR137/MIR2682 locus might confer risk to schizophrenia and bipolar disorder. Am J Hum Genet. 2014;95:744–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94:677–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng Y, Wang ZM, Tan W, Wang X, Li Y, Bai B, et al. Partial loss of psychiatric risk gene Mir137 in mice causes repetitive behavior and impairs sociability and learning via increased Pde10a. Nat Neurosci. 2018;21:1689–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.

    Article  PubMed  Google Scholar 

  22. Kaushik S, Cuervo AM. Proteostasis and aging. Nat Med. 2015;21:1406–15.

    Article  CAS  PubMed  Google Scholar 

  23. Momen-Heravi F, Bala S, Bukong T, Szabo G. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine: Nanotechnology, Biology, and Medicine. 2014;10:1517–27.

    Article  CAS  PubMed  Google Scholar 

  24. Wiklander OP, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015;4:26316.

    Article  PubMed  Google Scholar 

  25. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    Article  CAS  PubMed  Google Scholar 

  26. Karimi N, Cvjetkovic A, Jang SC, Crescitelli R, Hosseinpour Feizi MA, Nieuwland R, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. 2018;75:2873–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shpyleva S, Ivanovsky S, de Conti A, Melnyk S, Tryndyak V, Beland FA, et al. Cerebellar oxidative DNA damage and altered DNA methylation in the BTBR T+tf/J mouse model of autism and similarities with human post mortem cerebellum. PLoS ONE. 2014;9:e113712.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ginsberg MR, Rubin RA, Natowicz MR. Patterning of regional gene expression in autism: new complexity. Sci Rep. 2013;3:1831.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis T, Babor M, et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell. 2014;159:1511–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474:380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakata M, Kimura R, Funabiki Y, Awaya T, Murai T, Hagiwara M. MicroRNA profiling in adults with high-functioning autism spectrum disorder. Mol Brain. 2019;12:82.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ito K, Murphy D. Application of ggplot2 to Pharmacometric Graphics. CPT Pharmacomet Syst Pharmacol. 2013;2:e79.

    Article  CAS  Google Scholar 

  34. Gene Ontology C. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43:D1049–1056.

    Article  Google Scholar 

  35. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50:W216–w221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Psych EC, Akbarian S, Liu C, Knowles JA, Vaccarino FM, Farnham PJ, et al. The PsychENCODE project. Nat Neurosci. 2015;18:1707–12.

    Article  Google Scholar 

  38. Qin Q, Fan L, Zeng X, Zheng D, Wang H, Li M, et al. Mesenchymal stem cell-derived extracellular vesicles alleviate autism by regulating microglial glucose metabolism reprogramming and neuroinflammation through PD-1/PD-L1 interaction. J Nanobiotechnol. 2025;23:201.

    Article  CAS  Google Scholar 

  39. Zeng X, Fan L, Qin Q, Zheng D, Wang H, Li M, et al. Exogenous PD-L1 binds to PD-1 to alleviate and prevent autism-like behaviors in maternal immune activation-induced male offspring mice. Brain, Behavior, Immun. 2024;122:527–46.

    Article  CAS  Google Scholar 

  40. Fan L, Zeng X, Jiang Y, Zheng D, Wang H, Qin Q, et al. Yigansan ameliorates maternal immune activation-induced autism-like behaviours by regulating the IL-17A/TRAF6/MMP9 pathway: Network analysis and experimental validation. Phytomedicine. 2024;128:155386.

    Article  CAS  PubMed  Google Scholar 

  41. Cristiano C, Pirozzi C, Coretti L, Cavaliere G, Lama A, Russo R, et al. Palmitoylethanolamide counteracts autistic-like behaviours in BTBR T+tf/J mice: contribution of central and peripheral mechanisms. Brain, Behavior, Immun. 2018;74:166–75.

    Article  CAS  Google Scholar 

  42. Fodelianaki G, Lansing F, Bhattarai P, Troullinaki M, Zeballos MA, Charalampopoulos I, et al. Nerve Growth Factor modulates LPS - induced microglial glycolysis and inflammatory responses. Exp Cell Res. 2019;377:10–16.

    Article  CAS  PubMed  Google Scholar 

  43. Jia X, Gao Z, Hu H. Microglia in depression: current perspectives. Sci China Life Sci. 2021;64:911–25.

    Article  CAS  PubMed  Google Scholar 

  44. Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, et al. Consensus paper: cerebellum and social cognition. Cerebellum. 2020;19:833–68.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stoodley CJ. The cerebellum and neurodevelopmental disorders. Cerebellum. 2016;15:34–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu Y, Mai W, Chen L, Cao K, Zhang B, Zhang Z, et al. mTOR-mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Glia. 2020;68:1031–45.

    Article  PubMed  Google Scholar 

  47. Pan RY, Ma J, Kong XX, Wang XF, Li SS, Qi XL, et al. Sodium rutin ameliorates Alzheimer’s disease-like pathology by enhancing microglial amyloid-beta clearance. Sci Adv. 2019;5:eaau6328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baik SH, Kang S, Lee W, Choi H, Chung S, Kim JI, et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab. 2019;30:493–507.e496.

    Article  CAS  PubMed  Google Scholar 

  49. Qiao H, He X, Zhang Q, Yuan H, Wang D, Li L, et al. Alpha-synuclein induces microglial migration via PKM2-dependent glycolysis. Int J Biol Macromol. 2019;129:601–7.

    Article  CAS  PubMed  Google Scholar 

  50. Vallee A, Vallee JN. Warburg effect hypothesis in autism Spectrum disorders. Mol Brain. 2018;11:1.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Heidari A, Yazdanpanah N, Rezaei N. The role of Toll-like receptors and neuroinflammation in Parkinson’s disease. J Neuroinflammation. 2022;19:135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ni H, Liu M, Cao M, Zhang L, Zhao Y, Yi L, et al. Sinomenine regulates the cholinergic anti-inflammatory pathway to inhibit TLR4/NF-kappaB pathway and protect the homeostasis in brain and gut in scopolamine-induced Alzheimer’s disease mice. Biomed Pharmacother. 2024;171:116190.

    Article  CAS  PubMed  Google Scholar 

  53. Liu M, Xu Z, Wang L, Zhang L, Liu Y, Cao J, et al. Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J Neuroinflammation. 2020;17:270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Murphy CE, Walker AK, O’Donnell M, Galletly C, Lloyd AR, Liu D, et al. Peripheral NF-kappaB dysregulation in people with schizophrenia drives inflammation: putative anti-inflammatory functions of NF-kappaB kinases. Transl Psychiatry. 2022;12:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li D, Wang Y, Jin X, Hu D, Xia C, Xu H, et al. NK cell-derived exosomes carry miR-207 and alleviate depression-like symptoms in mice. J Neuroinflammation. 2020;17:126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pan T, Sun S, Chen Y, Tian R, Chen E, Tan R, et al. Immune effects of PI3K/Akt/HIF-1α-regulated glycolysis in polymorphonuclear neutrophils during sepsis. Crit Care. 2022;26:29.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lu H, Lin J, Xu C, Sun M, Zuo K, Zhang X, et al. Cyclosporine modulates neutrophil functions via the SIRT6-HIF-1α-glycolysis axis to alleviate severe ulcerative colitis. Clin Transl Med. 2021;11:e334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank the assistance provided from Province Key Laboratory of Children development and genetic research (Harbin Medical University, Heilongjiang, China) and Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education (Harbin Medical University, Heilongjiang, China).

Funding

This study was supported by grants from the National Natural Science Foundation of China (81973068); the Open Project Program of Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (LPHGRDC2021-004); Postgraduate Research & Practice Innovation Program of Harbin Medical University (YJSCX2023-19HYD); the Excellent Young Teachers’ Basic Research Support Program of Heilongjiang Province (YQJH2023040); Heilongjiang Province Postdoctoral Start-up Fund (LBH-Q19029).

Author information

Authors and Affiliations

Contributions

QQ, SL and LJW conceptualized and designed experiments for this research. QQ performed molecular experiments; analyzed the data; and wrote and edited the original manuscript. QQ and LLF preprocessed and analyzed the molecular experiments. MYL, LLF and XZ performed bioinformatic analysis. LX and XRM performed cell culture experiments. DYZ, HW and YTJ performed mice breeding and mice behavior experiments. SL obtained funding. SL and LJW critically reviewed the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Lijie Wu or Shuang Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal studies and experimental procedures were approved by the Ethics Committee of Harbin Medical University (HMUIRB20210002) and were performed according to the guidelines of the Institutional Animal Care and Use Committee of the university. Additionally, the number of mice used in the experiments was minimized as much as possible in accordance with the 3R-principle (replacement, reduction, and refinement). We carried out euthanasia according to regulations for all mice that reached the end of their lives.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Q., Li, M., Fan, L. et al. RVG engineered extracellular vesicles-transmitted miR-137 improves autism by modulating glucose metabolism and neuroinflammation. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-02988-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-02988-0

Search

Quick links