Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stress-induced reduction of sodium leak currents causes social deficits by impairing dorsal dentate gyrus-medial septum glutamatergic projection

Abstract

Stress-induced social deficits are related with the malfunction of dentate gyrus (DG). However, the exact molecular mechanism and/or neural circuit of DG participated in social impairments induced by chronic stress is not fully known. Here, we report that the sodium leak channel (NALCN) reduction in the dorsal DG (dDG) but not the ventral DG (vDG) induces social deficits of chronic stress through lowering the excitability and the firings of the glutamatergic neurons. Furthermore, the present study reveals that the medial septum (MS) is an important downstream projection region of dDG glutamatergic neurons involved in the social impairments of chronic stress; and activating the dDG-MS glutamatergic projection significantly relieves these social deficits. In summary, these findings indicate that NALCN in dDG glutamatergic neurons presents a promising molecular target for social deficits of chronic stress via influencing the activity of the dDG glutamatergic neurons (dDGGlu) and their projection to the MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The decreased neuronal firing of dDG is intimately associated with chronic stress induced social avoidance and social recognition impairment.
Fig. 2: Chronic stress impairs the neural excitability of the dDG and vDG probably due to the dysfunction of NALCN.
Fig. 3: NALCN in the dDG neurons is a molecular target of chronic stress induced social avoidance and social recognition impairment.
Fig. 4: NALCN reduction in the dDG glutamatergic neurons specifically reproduces social avoidance and social recognition impairment.
Fig. 5: NALCN reduction in the dDG glutamatergic neurons decreases neural excitability and lowers neurons firing during social interactions.
Fig. 6: Increasing NALCN expression in the dDG glutamatergic neurons alleviates chronic stress-induced social deficits through enhancing neuronal excitability.
Fig. 7: Activation of the dDG–MS glutamatergic projection rescues chronic stress-induced social deficits.

Similar content being viewed by others

Data availability

The data that support the findings of this study are presented in the form of graphs and available from the corresponding author upon reasonable request.

References

  1. Stein MB, Stein DJ. Social anxiety disorder. Lancet. 2008;371:1115–25.

    Article  PubMed  Google Scholar 

  2. Iozzino L, Harvey PD, Canessa N, Gosek P, Heitzman J, Macis A, et al. Neurocognition and social cognition in patients with schizophrenia spectrum disorders with and without a history of violence: results of a multinational European study. Transl Psychiatry. 2021;11:620.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Elmer T, Stadtfeld C. Depressive symptoms are associated with social isolation in face-to-face interaction networks. Sci Rep. 2020;10:1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DiSabato DJND, Liu X, Witcher KG, O’Neil SM, Oliver B, Bray CE, et al. Interleukin-1 receptor on hippocampal neurons drives social withdrawal and cognitive deficits after chronic social stress. Mol Psychiatry. 2021;26:4770–82.

    Article  CAS  PubMed  Google Scholar 

  5. Liu YDS, Li LX, Zhou ZX, Lv Q, Wang ZY, Wang F, et al. A circuit from dorsal hippocampal CA3 to parvafox nucleus mediates chronic social defeat stress-induced deficits in preference for social novelty. Sci Adv. 2022;8:eabe8828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sandi C, Haller J. Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat Rev Neurosci. 2015;16:290–304.

    Article  CAS  PubMed  Google Scholar 

  7. Friedman AKWJ, Juarez B, Ku SM, Chaudhury D, Wang J, Li X, et al. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science. 2014;344:313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim J, Lei Y, Lu X-Y, Kim CS. Glucocorticoid-glucocorticoid receptor-HCN1 channels reduce neuronal excitability in dorsal hippocampal CA1 neurons. Mol Psychiatry. 2022;27:4035–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Donegan ML, Stefanini F, Meira T, Gordon JA, Fusi S, Siegelbaum SA. Coding of social novelty in the hippocampal CA2 region and its disruption and rescue in a 22q11.2 microdeletion mouse model. Nat Neurosci. 2020;23:1365–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, et al. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol. 2010;119:755–70.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li J, Sun X, You Y, Li Q, Wei C, Zhao L, et al. Auts2 deletion involves in DG hypoplasia and social recognition deficit: the developmental and neural circuit mechanisms. Sci Adv. 2022;8:eabk1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Dijk MTTA, Kashyap P, Desai K, Kelsall NC, Gameroff MJ, Aw N, et al. Dentate gyrus microstructure is associated with resilience after exposure to maternal stress across two human cohorts. Biol Psychiatry. 2024;95:27–36.

    Article  PubMed  Google Scholar 

  13. Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature. 2018;559:98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Snyder JSSA, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476:458–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Du Preez AOD, Eiben I, Musaelyan K, Egeland M, Zunszain PA, Fernandes C, et al. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun. 2021;91:24–47.

    Article  PubMed  Google Scholar 

  16. Wang ZNT, Mueller SG, Lenoci M, Truran D, Marmar CR, Weiner MW, et al. Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder. Arch Gen Psychiatry. 2010;67:296–303.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Aoki Y, Nishimura Y, Hondrich T, Nakayama R, Igata H, Sasaki T, et al. Selective attenuation of electrophysiological activity of the dentate gyrus in a social defeat mouse model. J Physiological Sci. 2016;67:507–13.

    Article  Google Scholar 

  18. Deng S-L, Hu Z-L, Mao L, Gao B, Yang Q, Wang F, et al. The effects of Kctd12, an auxiliary subunit of GABAB receptor in dentate gyrus on behavioral response to chronic social defeat stress in mice. Pharmacol Res. 2021;163:105355.

    Article  CAS  PubMed  Google Scholar 

  19. Borzello M, Ramirez S, Treves A, Lee I, Scharfman H, Stark C, et al. Assessments of dentate gyrus function: discoveries and debates. Nat Rev Neurosci. 2023;24:502–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang C, Liu H, Li K, Wu Z-Z, Wu C, Yu J-Y, et al. Tactile modulation of memory and anxiety requires dentate granule cells along the dorsoventral axis. Nat Commun. 2020;11:6045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeates DCM, Ussling A, Lee ACH, Ito R. Double dissociation of learned approach-avoidance conflict processing and spatial pattern separation along the dorsoventral axis of the dentate gyrus. Hippocampus. 2020;30:596–609.

    Article  PubMed  Google Scholar 

  22. Zhang T-Y, Keown CL, Wen X, Li J, Vousden DA, Anacker C, et al. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus. Nat Commun. 2018;9:298.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maaswinkel HBA, Gispen WH, Spruijt BM. Roles of the basolateral amygdala and hippocampus in social recognition in rats. Physiol Behav. 1996;60:55–63.

    Article  CAS  PubMed  Google Scholar 

  24. Doucette E, Merfeld E, Leblanc H, Monasterio A, Cincotta C, Grella SL, et al. Social behavior in mice following chronic optogenetic stimulation of hippocampal engrams. Neurobiol Learn Mem. 2020;176:107321.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Raam T, McAvoy KM, Besnard A, Veenema AH, Sahay A. Hippocampal oxytocin receptors are necessary for discrimination of social stimuli. Nat Commun. 2017;8:2001.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yun S, Reynolds RP, Petrof I, White A, Rivera PD, Segev A, et al. Stimulation of entorhinal cortex–dentate gyrus circuitry is antidepressive. Nat Med. 2018;24:658–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cochet-Bissuel M, Lory P, Monteil A. The sodium leak channel, NALCN, in health and disease. Front Cell Neurosci. 2014;8:132.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lu B, Su Y, Das S, Liu J, Xia J, Ren D. The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell. 2007;129:371–83.

    Article  CAS  PubMed  Google Scholar 

  29. Kschonsak M, Chua HC, Noland CL, Weidling C, Clairfeuille T, Bahlke OØ, et al. Structure of the human sodium leak channel NALCN. Nature. 2020;587:313–8.

    Article  CAS  PubMed  Google Scholar 

  30. Al-Sayed Moeenaldeen D, Al-Zaidan H, Albakheet A, Hakami H, Kenana R, Al-Yafee Y, et al. Mutations in NALCN cause an autosomal-recessive syndrome with severe hypotonia, speech impairment, and cognitive delay. Am J Hum Genet. 2013;93:721–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Terracciano A, Tanaka T, Sutin AR, Sanna S, Deiana B, Lai S, et al. Genome-wide association scan of trait depression. Biol Psychiatry. 2010;68:811–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Al-Mazidi S, Al-Ayadhi L, Alqahtany F, Abualnaja A, Alzarroug A, Alharbi T, et al. The possible role of sodium leakage channel localization factor-1 in the pathophysiology and severity of autism spectrum disorders. Sci Rep. 2023;13:9747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghezzi A, Liebeskind BJ, Thompson A, Atkinson NS, Zakon HH. Ancient association between cation leak channels and Mid1 proteins is conserved in fungi and animals. Front Mol Neurosci. 2014;7:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burg ED, Langan ST, Nash HA. Drosophila social clustering is disrupted by anesthetics and in narrow abdomen ion channel mutants. Genes Brain Behav. 2013;12:338–47.

    Article  CAS  PubMed  Google Scholar 

  35. Wang J, Yang Y, Liu J, Qiu J, Zhang D, Ou M, et al. Loss of sodium leak channel (NALCN) in the ventral dentate gyrus impairs neuronal activity of the glutamatergic neurons for inflammation-induced depression in male mice. Brain Behavior Immun. 2023;110:13–29.

    Article  CAS  Google Scholar 

  36. Toth I, Neumann ID. Animal models of social avoidance and social fear. Cell Tissue Res. 2013;354:107–18.

    Article  PubMed  Google Scholar 

  37. Li M, Sun X, Wang Z, Li Y. Caspase-1 affects chronic restraint stress-induced depression-like behaviors by modifying GABAergic dysfunction in the hippocampus. Transl Psychiatry. 2023;13:229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci. 2009;10:519–29.

    Article  CAS  PubMed  Google Scholar 

  39. Rein B, Ma K, Yan Z. A standardized social preference protocol for measuring social deficits in mouse models of autism. Nat Protoc. 2020;15:3464–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature. 2018;554:323–7.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang D, Zhao W, Liu J, Ou M, Liang P, Li J, et al. Sodium leak channel contributes to neuronal sensitization in neuropathic pain. Prog Neurobiol. 2021;202:102041.

    Article  CAS  PubMed  Google Scholar 

  42. Hagihara H, Toyama K, Yamasaki N, Miyakawa T. Dissection of hippocampal dentate gyrus from adult mouse. J Vis Exp. 2009:1543. https://doi.org/10.3791/1543.

  43. Feng Y, Chang P, Kang Y, Liao P, Li C-y, Liu J, et al. Etomidate-induced myoclonus in sprague-dawley rats involves neocortical glutamate accumulation and N-Methyl-d-Aspartate receptor activity. Anesthesia & Analgesia. 2023;137:221–33.

  44. Wang R, Hu X, Liu S, Wang J, Xiong F, Zhang X, et al. Kaempferol‐3‐O‐sophoroside (PCS‐1) contributes to modulation of depressive‐like behaviour in C57BL/6J mice by activating AMPK. Br J Pharmacol. 2023;181:1182–202.

    Article  PubMed  Google Scholar 

  45. Ou M, Zhao W, Liu J, Liang P, Huang H, Yu H, et al. The general anesthetic isoflurane bilaterally modulates neuronal excitability. iScience. 2020;23:100760.

    Article  CAS  PubMed  Google Scholar 

  46. Yang Y, Ou M, Liu J, Zhao W, Zhuoma L, Liang Y, et al. Volatile anesthetics activate a leak sodium conductance in retrotrapezoid nucleus neurons to maintain breathing during anesthesia in mice. Anesthesiology. 2020;133:824–38.

    Article  CAS  PubMed  Google Scholar 

  47. Zhu X, Tang H-D, Dong W-Y, Kang F, Liu A, Mao Y, et al. Distinct thalamocortical circuits underlie allodynia induced by tissue injury and by depression-like states. Nat Neurosci. 2021;24:542–53.

    Article  CAS  PubMed  Google Scholar 

  48. Tripathi A, Bartosh A, Whitehead C, Pillai A. Activation of cell-free mtDNA-TLR9 signaling mediates chronic stress-induced social behavior deficits. Mol Psychiatry. 2023;28:3806–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Manski CF. Economic Analysis of Social Interactions. J Economic Perspect. 2000;14:115–36.

    Article  Google Scholar 

  50. Monninger M, Aggensteiner P-M, Pollok TM, Reinhard I, Hall ASM, Zillich L, et al. Real-time individual benefit from social interactions before and during the lockdown: the crucial role of personality, neurobiology and genes. Transl Psychiatry. 2022;12:28.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wersebe H, Lieb R, Meyer AH, Miche M, Mikoteit T, Imboden C, et al. Well-being in major depression and social phobia with and without comorbidity. Int J Clin Health Psychol. 2018;18:201–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wittchen HUBE. The impact of social phobia on quality of life. Int Clin Psychopharmacol. 1996;11:15–23.

    Article  PubMed  Google Scholar 

  53. Kheirbek Mazen A, Drew Liam J, Burghardt Nesha S, Costantini Daniel O, Tannenholz L, Ahmari Susanne E, et al. Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron. 2013;77:955–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65:7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74:285–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bickle JGLY, Millette A, Dixon R, Wu S, Arias EC, Luna VM, et al. 5-HT1A receptors on dentate gyrus granule cells confer stress resilience. Psychiatry Res. 2024;95:800–9.

    CAS  Google Scholar 

  57. Levone BR, Codagnone MG, Moloney GM, Nolan YM, Cryan JF, O’ Leary OF. Adult-born neurons from the dorsal, intermediate, and ventral regions of the longitudinal axis of the hippocampus exhibit differential sensitivity to glucocorticoids. Mol Psychiatry. 2020;26:3240–52.

    Article  PubMed  Google Scholar 

  58. Seo D-o, Zhang ET, Piantadosi SC, Marcus DJ, Motard LE, Kan BK, et al. A locus coeruleus to dentate gyrus noradrenergic circuit modulates aversive contextual processing. Neuron. 2021;109:2116–2130.e2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ngodup T, Irie T, Elkins SP, Trussell LO. The Na+ leak channel NALCN controls spontaneous activity and mediates synaptic modulation by α2-adrenergic receptors in auditory neurons. Elife. 2024;12:RP89520.

  60. Kesner RP. An analysis of dentate gyrus function (an update). Behavioural Brain Res. 2018;354:84–91.

    Article  Google Scholar 

  61. Zou D, Chen L, Deng D, Jiang D, Dong F, McSweeney C, et al. DREADD in Parvalbumin Interneurons of the Dentate Gyrus modulates anxiety social interaction and memory extinction. Curr Mol Med. 2016;16:91–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Király B, Domonkos A, Jelitai M, Lopes-dos-Santos V, Martínez-Bellver S, Kocsis B, et al. The medial septum controls hippocampal supra-theta oscillations. Nat Commun. 2023;14:6159.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Banker SM, Gu X, Schiller D, Foss-Feig JH. Hippocampal contributions to social and cognitive deficits in autism spectrum disorder. Trends Neurosci. 2021;44:793–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Griguoli M, Pimpinella D. Medial septum: relevance for social memory. Front Neural Circuits. 2022;16:965172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu X, Morishita W, Beier KT, Heifets BD, Malenka RC. 5-HT modulation of a medial septal circuit tunes social memory stability. Nature. 2021;599:96–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pimpinella DMV, Giorgi C, Coemans S, Lecca S, Lalive AL, Ostermann H, et al. Septal cholinergic input to CA2 hippocampal region controls social novelty discrimination via nicotinic receptor- mediated disinhibition. eLife. 2021;10:e65580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Freund TF, Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 1988;336:170–3.

    Article  CAS  PubMed  Google Scholar 

  68. Li HH, Liu Y, Chen HS, Wang J, Li YK, Zhao Y, et al. PDGF‐BB‐dependent neurogenesis buffers depressive‐like behaviors by inhibition of GABAergic projection from medial septum to dentate gyrus. Adv Sci. 2023;10:e2301110.

    Article  Google Scholar 

  69. Kohara K, Pignatelli M, Rivest AJ, Jung H-Y, Kitamura T, Suh J, et al. Cell type–specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat Neurosci. 2013;17:269–79.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China [Grant No. 82301360, to JPW] and [Grant No. 82271290, to CZ] and [Grant No. 82371281, to TZ]; Natural Science Foundation of Sichuan Province [Grant No. 2023NSFSC1488, to JPW] and [Grant No. 2023ZYD0168, to CZ].

Author information

Authors and Affiliations

Authors

Contributions

CZ, GC and JL designed the research. JW YZ and YY performed the research including virus injection, behavioral tests, and electrophysiological recordings. XW, and TZ analyzed the data. XJ and YH prepared figures and created illustrations. JW, and CZ wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guo Chen or Cheng Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, L., Liu, J. et al. Stress-induced reduction of sodium leak currents causes social deficits by impairing dorsal dentate gyrus-medial septum glutamatergic projection. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03101-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-03101-1

Search

Quick links