Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Network homeostasis: functional brain network alterations and relapse in remitted late-life depression

Abstract

Late-life depression (LLD) is highly recurrent and associated with disability and increased mortality. In this study, we aim to identify neurobiological factors that are prospectively associated with relapse risk in late-life depression. We recruited 145 older adults (age ≥ 60): 102 recently remitted LLD participants and 43 healthy comparisons. Participants underwent baseline MRI and evaluation of depression symptoms/status for up to 2 years. We evaluated intrinsic network connectivity for 111 participants (39 healthy comparisons, 47 stable remitted, 25 relapsed). Compared to healthy comparisons, LLD participants had lower connectivity within the somatomotor network and greater connectivity between the executive control and default mode networks (DMN). Lower connectivity of DMN to somatomotor and salience networks was associated with relapse. Overall, connectivity of relapse participants was more similar to healthy comparisons than connectivity of stable remitted participants was. We found robust differences in network functional connectivity between stable remitted and relapsed participants. We also found evidence of neural “scarring,” or persistent functional network differences at baseline in all participants with a history of depression. Alterations in DMN connectivity were observed most prominently. Notably, the network structure of relapsed participants was more similar to healthy comparisons than stable remitted participants. These findings indicate that remission is associated with persistent functional network alterations while vulnerability to relapse is associated with a failure to establish a new stable homeostatic functional network structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptualization of recurrence and relapse in late-life depression.
Fig. 2: Network connectivity differences for all remitted late-life depression (LLD) vs. healthy comparisons (Health.).
Fig. 3: Pairwise network connectivity differences between stable remitted (Rem.), relapse (Rel.), and healthy comparisons (Health.).
Fig. 4: Network connectivity differences associated with time to relapse.

Similar content being viewed by others

Data availability

Deidentified data is available upon reasonable request after all planned primary analyses have been completed.

References

  1. Taylor Warren D. Depression in the elderly. N Engl J Med. 2014;371:1228–36. https://doi.org/10.1056/NEJMcp1402180.

    Article  CAS  PubMed  Google Scholar 

  2. Szymkowicz SM, Gerlach AR, Homiack D, Taylor WD. Biological factors influencing depression in later life: role of aging processes and treatment implications. Transl Psychiatry. 2023;13:1–16. https://doi.org/10.1038/s41398-023-02464-9.

    Article  Google Scholar 

  3. Penninx BWJH, Geerlings SW, Deeg DJH, van Eijk JTM, van Tilburg W, Beekman ATF. Minor and major depression and the risk of death in older persons. Arch Gen Psychiatry. 1999;56:889–95. https://doi.org/10.1001/archpsyc.56.10.889.

    Article  CAS  PubMed  Google Scholar 

  4. Beekman AT, Geerlings SW, Deeg DJ, Smit JH, Schoevers RS, de Beurs E, et al. The natural history of late-life depression: a 6-year prospective study in the community. Arch Gen Psychiatry. 2002;59:605–11. https://doi.org/10.1001/archpsyc.59.7.605.

    Article  PubMed  Google Scholar 

  5. Reynolds CF, Dew MA, Pollock BG, Mulsant BH, Frank E, Miller MD, et al. Maintenance treatment of major depression in old age. N Engl J Med. 2006;354:1130–8. https://doi.org/10.1056/NEJMoa052619.

    Article  CAS  PubMed  Google Scholar 

  6. Penninx BWJH. Depression and cardiovascular disease: epidemiological evidence on their linking mechanisms. Neurosci Biobehav Rev. 2017;74:277–86. https://doi.org/10.1016/j.neubiorev.2016.07.003.

    Article  PubMed  Google Scholar 

  7. Pan A, Sun Q, Okereke OI, Rexrode KM, Hu FB. Depression and risk of stroke morbidity and mortality: a meta-analysis and systematic review. JAMA. 2011;306:1241–9. https://doi.org/10.1001/jama.2011.1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ganguli M, Du Y, Dodge HH, Ratcliff GG, Chang CCH. Depressive symptoms and cognitive decline in late life: a prospective epidemiological study. Arch Gen Psychiatry. 2006;63:153–60. https://doi.org/10.1001/archpsyc.63.2.153.

    Article  PubMed  Google Scholar 

  9. Andreescu C, Ajilore O, Aizenstein HJ, Albert K, Butters MA, Landman BA, et al. Disruption of neural homeostasis as a model of relapse and recurrence in late-life depression. Am J Geriatr Psychiatry. 2019;27:1316–30. https://doi.org/10.1016/j.jagp.2019.07.016.

    Article  PubMed  PubMed Central  Google Scholar 

  10. McEwen BS, Gianaros PJ. Stress- and allostasis-induced brain plasticity. Annu Rev Med. 2011;62:431–45. https://doi.org/10.1146/annurev-med-052209-100430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ming Q, Zhong X, Zhang X, Pu W, Dong D, Jiang Y, et al. State-independent and dependent neural responses to psychosocial stress in current and remitted depression. Am J Psychiatry. 2017;174:971–9. https://doi.org/10.1176/appi.ajp.2017.16080974.

    Article  PubMed  Google Scholar 

  12. Scheffer M, Bockting CL, Borsboom D, Cools R, Delecroix C, Hartmann J, et al. A dynamical systems view of psychiatric disorders—theory: a review. JAMA Psychiatry. 2024. https://doi.org/10.1001/jamapsychiatry.2024.0215.

  13. Scheffer M, Bockting CL, Borsboom D, Cools R, Delecroix C, Hartmann J, et al. A dynamical systems view of psychiatric disorders—practical implications: a review. JAMA Psychiatry. 2024. https://doi.org/10.1001/jamapsychiatry.2024.0228.

  14. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506. https://doi.org/10.1016/j.tics.2011.08.003.

    Article  PubMed  Google Scholar 

  15. Gunning FM, Oberlin LE, Schier M, Victoria LW. Brain-based mechanisms of late-life depression: implications for novel interventions. Semin Cell Dev Biol. 2021;116:169–79. https://doi.org/10.1016/j.semcdb.2021.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tan W, Ouyang X, Huang D, Wu Z, Liu Z, He Z, et al. Disrupted intrinsic functional brain network in patients with late-life depression: Evidence from a multi-site dataset. J Affect Disord. 2023;323:631–9. https://doi.org/10.1016/j.jad.2022.12.019.

    Article  PubMed  Google Scholar 

  17. Yang H, Chen X, Chen ZB, Li L, Li XY, Castellanos FX, et al. Disrupted intrinsic functional brain topology in patients with major depressive disorder. Mol Psychiatry. 2021;26:7363–71. https://doi.org/10.1038/s41380-021-01247-2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Karim HT, Andreescu C, Tudorascu D, Smagula SF, Butters MA, Karp JF, et al. Intrinsic functional connectivity in late-life depression: trajectories over the course of pharmacotherapy in remitters and non-remitters. Mol Psychiatry. 2017;22:450–7. https://doi.org/10.1038/mp.2016.55.

    Article  CAS  PubMed  Google Scholar 

  19. Wu M, Andreescu C, Butters MA, Tamburo R, Reynolds CF, Aizenstein H. Default-mode network connectivity and white matter burden in late-life depression. Psychiatry Res Neuroimaging. 2011;194:39–46. https://doi.org/10.1016/j.pscychresns.2011.04.003.

    Article  Google Scholar 

  20. Dunlop BW, Cha J, Choi KS, Nemeroff CB, Craighead WE, Mayberg HS. Functional connectivity of salience and affective networks among remitted depressed patients predicts episode recurrence. Neuropsychopharmacology. 2023;48:1901–9. https://doi.org/10.1038/s41386-023-01653-w.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Taylor WD, Ajilore O, Karim HT, Butters MA, Krafty R, Boyd BD, et al. Assessing depression recurrence, cognitive burden, and neurobiological homeostasis in late life: Design and rationale of the REMBRANDT study. J Mood Anxiety Disord. 2023;5:100038 https://doi.org/10.1016/j.xjmad.2023.100038. Published online

    Article  PubMed  PubMed Central  Google Scholar 

  22. Warden D, Rush AJ, Trivedi MH, Fava M, Wisniewski SR. The STAR*D project results: a comprehensive review of findings. Curr Psychiatry Rep. 2007;9:449–59. https://doi.org/10.1007/s11920-007-0061-3.

    Article  PubMed  Google Scholar 

  23. Steffens DC, McQuoid DR, Krishnan KRR. The Duke somatic treatment algorithm for geriatric depression (STAGED) approach. Psychopharmacol Bull. 2002;36:58–68.

    PubMed  Google Scholar 

  24. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry J Ment Sci. 1979;134:382–9. https://doi.org/10.1192/bjp.134.4.382.

    Article  CAS  Google Scholar 

  25. Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, et al. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Adolesc Brain Cogn Dev ABCD Consort Ratio Aims Assess Strategy. 2018;32:43–54. https://doi.org/10.1016/j.dcn.2018.03.001.

    Article  CAS  Google Scholar 

  26. Cho JW, Korchmaros A, Vogelstein JT, Milham MP, Xu T. Impact of concatenating fMRI data on reliability for functional connectomics. NeuroImage. 2021;226:117549. https://doi.org/10.1016/j.neuroimage.2020.117549.

    Article  PubMed  Google Scholar 

  27. Gunter JL, Bernstein MA, Borowski BJ, Ward CP, Britson PJ, Felmlee JP, et al. Measurement of MRI scanner performance with the ADNI phantom. Med Phys. 2009;36:2193–205. https://doi.org/10.1118/1.3116776.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Friedman L, Glover GH. Report on a multicenter fMRI quality assurance protocol. J Magn Reson Imaging. 2006;23:827–39. https://doi.org/10.1002/jmri.20583.

    Article  PubMed  Google Scholar 

  29. Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE. Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier; 2011.

  30. Karim HT, Andreescu C, MacCloud RL, Butters MA, Reynolds CF, Aizenstein HJ, et al. The effects of white matter disease on the accuracy of automated segmentation. Psychiatry Res Neuroimaging. 2016;253:7–14. https://doi.org/10.1016/j.pscychresns.2016.05.003.

    Article  PubMed  Google Scholar 

  31. Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage. 2003;20:870–88. https://doi.org/10.1016/S1053-8119(03)00336-7.

    Article  PubMed  Google Scholar 

  32. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17:143–55. https://doi.org/10.1002/hbm.10062.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mazaika PK, Whitfield S, Cooper JC. Detection and repair of transient artifacts in fMRI data. Annual Meeting of the Organization for Human Brain Mapping, Toronto, ON, Canada. 2005.

  34. Shen X, Tokoglu F, Papademetris X, Constable RT. Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. NeuroImage. 2013;82:403–15. https://doi.org/10.1016/j.neuroimage.2013.05.081.

    Article  CAS  PubMed  Google Scholar 

  35. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex NYN 1991. 2018;28:3095–114. https://doi.org/10.1093/cercor/bhx179.

    Article  Google Scholar 

  36. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65. https://doi.org/10.1152/jn.00338.2011.

    Article  PubMed  Google Scholar 

  37. Donoho D, Jin J. Higher criticism for detecting sparse heterogeneous mixtures. Ann Stat. 2004;32:962–94. https://doi.org/10.1214/009053604000000265.

    Article  Google Scholar 

  38. Donoho D, Jin J. Higher criticism for large-scale inference, especially for rare and weak effects. Stat Sci. 2015;30:1–25. https://doi.org/10.1214/14-STS506.

    Article  Google Scholar 

  39. Gerlach AR, Karim HT, Kazan J, Aizenstein HJ, Krafty RT, Andreescu C. Networks of worry-towards a connectivity-based signature of late-life worry using higher criticism. Transl Psychiatry. 2021;11:550 https://doi.org/10.1038/s41398-021-01648-5.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wilson JD, Gerlach AR, Karim HT, Aizenstein HJ, Andreescu C Sex matters: acute functional connectivity changes as markers of remission in late-life depression differ by sex. Mol Psychiatry. 2023. https://doi.org/10.1038/s41380-023-02158-0.

  41. Sundermann B, Feldmann R, Mathys C, Rau J, Garde S, Braje A, et al. Functional connectivity of cognition-related brain networks in adults with fetal alcohol syndrome. BMC Med. 2023;21:496 https://doi.org/10.1186/s12916-023-03208-8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Langenecker SA, Jenkins LM, Stange JP, Chang YS, DelDonno SR, Bessette KL, et al. Cognitive control neuroimaging measures differentiate between those with and without future recurrence of depression. NeuroImage Clin. 2018;20:1001–9. https://doi.org/10.1016/j.nicl.2018.10.004.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Berwian IM, Wenzel JG, Kuehn L, Schnuerer I, Kasper L, Veer IM, et al. The relationship between resting-state functional connectivity, antidepressant discontinuation and depression relapse. Sci Rep. 2020;10:22346 https://doi.org/10.1038/s41598-020-79170-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry. 2015;72:603–11. https://doi.org/10.1001/jamapsychiatry.2015.0071.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gerlach AR, Karim HT, Peciña M, Ajilore O, Taylor WD, Butters MA, et al. MRI predictors of pharmacotherapy response in major depressive disorder. NeuroImage Clin. 2022;36:103157 https://doi.org/10.1016/j.nicl.2022.103157.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Eyre HA, Yang H, Leaver AM, Van Dyk K, Siddarth P, Cyr NS, et al. Altered resting-state functional connectivity in late-life depression: a cross-sectional study. J Affect Disord. 2016;189:126–33. https://doi.org/10.1016/j.jad.2015.09.011.

    Article  PubMed  Google Scholar 

  47. van Kleef RS, Kaushik P, Besten M, Marsman JC, Bockting C, van Vugt M, et al. Understanding and predicting future relapse in depression from resting state functional connectivity and self-referential processing. J Psychiatr Res. 2023;165:305–14. https://doi.org/10.1016/j.jpsychires.2023.07.034.

    Article  PubMed  Google Scholar 

  48. Li G, Liu Y, Zheng Y, Li D, Liang X, Chen Y, et al. Large‐scale dynamic causal modeling of major depressive disorder based on resting‐state functional magnetic resonance imaging. Hum Brain Mapp. 2019;41:865–81. https://doi.org/10.1002/hbm.24845.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vega JN, Taylor WD, Gandelman JA, Boyd BD, Newhouse PA, Shokouhi S, et al. Persistent intrinsic functional network connectivity alterations in middle-aged and older women with remitted depression. Front Psychiatry. 2020;11:62 https://doi.org/10.3389/fpsyt.2020.00062.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cui J, Wang Y, Liu R, Chen X, Zhang Z, Feng Y, et al. Effects of escitalopram therapy on resting-state functional connectivity of subsystems of the default mode network in unmedicated patients with major depressive disorder. Transl Psychiatry. 2021;11:634 https://doi.org/10.1038/s41398-021-01754-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiao K, Xu H, Teng C, Song X, Xiao C, Fox PT, et al. Connectivity patterns of cognitive control network in first episode medication-naive depression and remitted depression. Behav Brain Res. 2020;379:112381 https://doi.org/10.1016/j.bbr.2019.112381.

    Article  PubMed  Google Scholar 

  52. Workman CI, Lythe KE, McKie S, Moll J, Gethin JA, Deakin JF, et al. A novel resting-state functional magnetic resonance imaging signature of resilience to recurrent depression. Psychol Med. 2017;47:597–607. https://doi.org/10.1017/S0033291716002567.

    Article  CAS  PubMed  Google Scholar 

  53. Liu J, Fan Y, Ling-Li Z, Liu B, Ju Y, Wang M, et al. The neuroprogressive nature of major depressive disorder: evidence from an intrinsic connectome analysis. Transl Psychiatry. 2021;11:102 https://doi.org/10.1038/s41398-021-01227-8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Barron HC. Neural inhibition for continual learning and memory. Curr Opin Neurobiol. 2021;67:85–94. https://doi.org/10.1016/j.conb.2020.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deng Y, McQuoid DR, Potter GG, Steffens DC, Albert K, Riddle M, et al. Predictors of recurrence in remitted late-life depression. Depress Anxiety. 2018;35:658–67. https://doi.org/10.1002/da.22772.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We’d like to thank the numerous staff at VUMC, Pitt, and UIC who helped administer the study protocol and process the data. This work was supported by National of Institute of Health grants R01 MH121619, R01 MH121620, R01 MH121384, K01 MH133913, R01 MH108509, K01 MH122741, T32 MH019986, and the National Center for Advancing Translational Sciences grants UL1 TR000445 and UL1 TR002243.

Author information

Authors and Affiliations

Authors

Contributions

ARG—methodology, formal analysis, writing original draft, visualization; HTK—conceptualization, writing review and editing; AK—writing original draft, visualization; BDB—software, formal analysis, data curation; KK—writing original draft; RTK—conceptualization, supervision, writing review and editing; OA—conceptualization, funding acquisition, supervision, writing review and editing; WDT—conceptualization, funding acquisition, supervision, writing review and editing; CA—conceptualization, funding acquisition, supervision, writing review and editing.

Corresponding author

Correspondence to Carmen Andreescu.

Ethics declarations

Competing interests

OA is a co-founder of Keywise AI, has served as a consultant for Sage Therapeutics and Otsuka, has received honoraria from Boehringer Ingelheim, and is on the advisory board for Blueprint Health and Embodied Labs. AK serves as a consultant for Radicle Science. No other authors have disclosures to report.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerlach, A.R., Karim, H.T., Kolobaric, A. et al. Network homeostasis: functional brain network alterations and relapse in remitted late-life depression. Neuropsychopharmacol. (2025). https://doi.org/10.1038/s41386-025-02138-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-025-02138-8

This article is cited by

Search

Quick links