Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prefrontal corticotropin-releasing factor promotes resilience to social stress

Abstract

Variations in individual coping styles have been linked to either resilience or vulnerability towards stress, thereby influencing the probability of developing stress-related disorders. The involvement of corticotropin-releasing factor (CRF) neurons within the medial prefrontal cortex (mPFC) plays a crucial role in modulating behavioral responses to stressful situations. In this study utilizing a mouse model of social defeat stress (SDS), we demonstrate how coordinated activation and localized release of CRF within the mPFC contribute to promoting adaptive responses under stressful conditions leading to enhanced resilience against subsequent challenges. Specifically, during SDS exposure, heightened activity levels were observed among mPFC CRF neurons coincide with increased local release triggered by active exploration and defensive behaviors, while decreased responses were detected upon exposure to aggression. Interestingly, the CRF neural activity and local release responding to coping behaviors throughout chronic social defeat stress (CSDS) differed between susceptible and resilient mice. Furthermore, activation of CRF receptor 1 (CRFR1) signaling in the mPFC enhanced active coping behaviors and conferred resilience to CSDS, while inhibition of CRF system promoted passive coping behaviors and induced susceptibility to sub-threshold SDS. Additionally, inhibition of CRFR1 in the mPFC nullified the pro-resilience effect elicited by activation of CRF neurons during CSDS. The collective findings provide evidence supporting the crucial role of local endogenous CRF derived from mPFC CRF neurons in maintaining resilience through active coping styles when confronted with social stress. Moreover, these results suggest that targeting the mPFC CRF system could hold promise as a therapeutic approach for managing stress-related disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Behaviour-dependent CRF neuronal Ca2+ activity and CRF real-time release in the mPFC during acute social defeat.
Fig. 2: CRF neural activity and local release in the mPFC drove different outcomes to social stress.
Fig. 3: CSDS decreased excitability of mPFC CRF neurons in stress-susceptible mice.
Fig. 4: CRF/CRFR1 signaling in the mPFC contributes to the persistent resilience against CSDS induced by the increase of mPFC CRF neuronal activity.
Fig. 5: Activation of CRF/CRFR1 signaling in the mPFC exerts persistent resilience against CSDS.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Akil H, Nestler EJ. The neurobiology of stress: vulnerability, resilience, and major depression. Proc Natl Acad Sci USA. 2023;120:e2312662120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lucassen PJ, Pruessner J, Sousa N, Almeida OFX, Van Dam AM, Rajkowska G, et al. Neuropathology of stress. Acta Neuropathol. 2014;127:109–35.

    Article  CAS  PubMed  Google Scholar 

  3. Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5:374–81.

    Article  CAS  PubMed  Google Scholar 

  4. de Kloet ER, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6:463–75.

    Article  PubMed  Google Scholar 

  5. Wood SK, Bhatnagar S. Resilience to the effects of social stress: evidence from clinical and preclinical studies on the role of coping strategies. Neurobiol Stress. 2015;1:164–73.

    Article  PubMed  Google Scholar 

  6. Puglisi-Allegra S, Andolina D. Serotonin and stress coping. Behav Brain Res. 2015;277:58–67.

    Article  CAS  PubMed  Google Scholar 

  7. Koolhaas JM, Korte SM, De Boer SF, Van Der Vegt BJ, Van Reenen CG, Hopster H, et al. Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev. 1999;23:925–35.

    Article  CAS  PubMed  Google Scholar 

  8. Han MH, Nestler EJ. Neural substrates of depression and resilience. Neurotherapeutics. 2017;14:677–86.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bhatnagar S. Rethinking stress resilience. Trends Neurosci. 2021;44:936–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cathomas F, Murrough JW, Nestler EJ, Han M-H, Russo SJ. Neurobiology of resilience: interface between mind and body. Biol Psychiatry. 2019;86:410–20.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li HY, Zhu MZ, Yuan XR, Guo ZX, Pan YD, Li YQ, et al. A thalamic-primary auditory cortex circuit mediates resilience to stress. Cell. 2023;186:1352–68.e18.

    Article  CAS  PubMed  Google Scholar 

  12. Zhukovskaya A, Zimmerman CA, Willmore L, Pan-Vazquez A, Janarthanan SR, Lynch LA, et al. Heightened lateral habenula activity during stress produces brainwide and behavioral substrates of susceptibility. Neuron. 2024;112:3940–3956.

  13. Escobedo A, Holloway SA, Votoupal M, Cone AL, Skelton H, Legaria AA, et al. Glutamatergic supramammillary nucleus neurons respond to threatening stressors and promote active coping. Elife. 2024;12:RP90972.

  14. Deussing JM, Chen A. The corticotropin-releasing factor family: physiology of the stress response. Physiol Rev. 2018;98:2225–86.

    Article  CAS  PubMed  Google Scholar 

  15. Russell G, Lightman S. The human stress response. Nat Rev Endocrinol. 2019;15:525–34.

    Article  PubMed  Google Scholar 

  16. Rasiah NP, Loewen SP, Bains JS. Windows into stress: a glimpse at emerging roles for CRHPVN neurons. Physiol Rev. 2023;103:1667–91.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Hu P, Shan QH, Huang CA, Huang ZH, Chen P, et al. Single-cell morphological characterization of CRH neurons throughout the whole mouse brain. BMC Biol. 2021;19:47.

  18. Hu P, Wang Y, Qi XH, Shan QH, Huang ZH, Chen P, et al. SIRT1 in the BNST modulates chronic stress-induced anxiety of male mice via FKBP5 and corticotropin-releasing factor signaling. Mol Psychiatry. 2023;28:5101–17.

    Article  CAS  PubMed  Google Scholar 

  19. Xu XL, Zheng SD, Ren JY, Li ZX, Li JY, Xu ZB, et al. Hypothalamic CRF neurons facilitate brain reward function. Curr Biol. 2024;34:389–402.e5.

  20. Zhang N, Zhao S, Ma Y, Xiao Z, Xue B, Dong Y, et al. Hyperexcitation of ovBNST CRF neurons during stress contributes to female-biased expression of anxiety-like avoidance behaviors. Sci Adv. 2024;10:eadk7636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Füzesi T, Rasiah NP, Rosenegger DG, Rojas-Carvajal M, Chomiak T, Daviu N, et al. Hypothalamic CRH neurons represent physiological memory of positive and negative experience. Nat Commun. 2023;14:8522.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Birnie MT, Short AK, de Carvalho GB, Taniguchi L, Gunn BG, Pham AL, et al. Stress-induced plasticity of a CRH/GABA projection disrupts reward behaviors in mice. Nat Commun. 2023;14:1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim J, Lee S, Fang YY, Shin A, Park S, Hashikawa K, et al. Rapid, biphasic CRF neuronal responses encode positive and negative valence. Nat Neurosci. 2019;22:576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lv Y, Chen P, Shan QH, Qin XY, Qi XH, Zhou JN. Regulation of cued fear expression via corticotropin-releasing-factor neurons in the ventral anteromedial thalamic nucleus. Neurosci Bull. 2021;37:217–28.

    Article  CAS  PubMed  Google Scholar 

  25. Li SY, Cao JJ, Tan K, Fan L, Wang YQ, Shen ZX, et al. CRH neurons in the lateral hypothalamic area regulate feeding behavior of mice. Curr Biol. 2023;33:4827–43 e7.

    Article  CAS  PubMed  Google Scholar 

  26. Wang T, Ma Y-N, Zhang C-C, Liu X, Sun Y-X, Wang H-L, et al. The nucleus accumbens CRH-CRHR1 system mediates early-life stress-induced sleep disturbance and dendritic atrophy in the adult mouse. Neuroscience Bulletin. 2023;39:41–56.

    Article  CAS  PubMed  Google Scholar 

  27. Shinohara R, Furuyashiki T. Prefrontal contributions to mental resilience: lessons from rodent studies of stress and antidepressant actions. Neurosci Res. 2025;211:16–23.

  28. Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim S-Y, et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature. 2012;492:428–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar S, Hultman R, Hughes D, Michel N, Katz BM, Dzirasa K. Prefrontal cortex reactivity underlies trait vulnerability to chronic social defeat stress. Nat Commun. 2014;5:4537.

    Article  CAS  PubMed  Google Scholar 

  30. Franklin TB, Silva BA, Perova Z, Marrone L, Masferrer ME, Zhan Y, et al. Prefrontal cortical control of a brainstem social behavior circuit. Nat Neurosci. 2017;20:260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen P, Lou S, Huang ZH, Wang Z, Shan QH, Wang Y, et al. Prefrontal cortex corticotropin-releasing factor neurons control behavioral style selection under challenging situations. Neuron. 2020;106:301–15.e7.

    Article  CAS  PubMed  Google Scholar 

  32. Uribe-Mariño A, Gassen NC, Wiesbeck MF, Balsevich G, Santarelli S, Solfrank B, et al. Prefrontal cortex corticotropin-releasing factor receptor 1 conveys acute stress-induced executive dysfunction. Biol Psychiatry. 2016;80:743–53.

    Article  PubMed  Google Scholar 

  33. Lv SS, Lv XJ, Cai YQ, Hou XY, Zhang ZZ, Wang GH, et al. Corticotropin-releasing hormone neurons control trigeminal neuralgia-induced anxiodepression via a hippocampus-to-prefrontal circuit. Sci Adv. 2024;10:eadj4196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Riad MH, Park K, Ibañez-Tallon I, Heintz N. Local production of corticotropin-releasing hormone in prefrontal cortex modulates male-specific novelty exploration. Proc Natl Acad Sci USA. 2022;119:e2211454119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ohata H, Shibasaki T. Microinjection of different doses of corticotropin-releasing factor into the medial prefrontal cortex produces effects opposing anxiety-related behavior in rats. J Nippon Med School. 2011;78:286–92.

    Article  CAS  Google Scholar 

  36. Śmiałowska M, Zięba B, Domin H. A role of noradrenergic receptors in anxiolytic-like effect of high CRF in the rat frontal cortex. Neuropeptides. 2021;88:102162.

    Article  PubMed  Google Scholar 

  37. Zieba B, Grzegorzewska M, Brański P, Domin H, Wierońska JM, Hess G, et al. The behavioural and electrophysiological effects of CRF in rat frontal cortex. Neuropeptides. 2008;42:513–23.

    Article  CAS  PubMed  Google Scholar 

  38. de León Reyes NS, Sierra Díaz P, Nogueira R, Ruiz-Pino A, Nomura Y, de Solis CA, et al. Corticotropin-releasing hormone signaling from prefrontal cortex to lateral septum suppresses interaction with familiar mice. Cell. 2023;186::4152–4171.e31.

  39. Li L-F, Zhang L-Z, He Z-X, Yuan W, Ma H, Xun Y-F, et al. CRF-CRFR1 system within the dorsal medial prefrontal cortex are involved in consolation deficits under acute restraint stress in mandarin voles. Psychoneuroendocrinology. 2021;132:105353.

    Article  CAS  PubMed  Google Scholar 

  40. Hupalo S, Martin AJ, Green RK, Devilbiss DM, Berridge CW. Prefrontal corticotropin-releasing factor (CRF) neurons act locally to modulate frontostriatal cognition and circuit function. J Neurosci. 2019;39:2080–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang H, Qian T, Zhao Y, Zhuo Y, Wu C, Osakada T, et al. A tool kit of highly selective and sensitive genetically encoded neuropeptide sensors. Science. 2023;382:eabq8173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Golden SA, Covington HE 3rd, Berton O, Russo SJ. A standardized protocol for repeated social defeat stress in mice. Nat Protoc. 2011;6:1183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131:391–404.

    Article  CAS  PubMed  Google Scholar 

  44. Kim D-I, Park S, Park S, Ye M, Chen JY, Kang SJ, et al. Presynaptic sensor and silencer of peptidergic transmission reveal neuropeptides as primary transmitters in pontine fear circuit. Cell. 2024;187:5102–5117.e16.

  45. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493:532–6.

    Article  CAS  PubMed  Google Scholar 

  46. Maier SF, Watkins LR. Role of the medial prefrontal cortex in coping and resilience. Brain Res. 2010;1355:52–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Radley JJ, Herman JP. Preclinical models of chronic stress: adaptation or pathology? Biol Psychiatry. 2023;94:194–202.

    Article  CAS  PubMed  Google Scholar 

  48. Southwick SM, Vythilingam M, Charney DS. The psychobiology of depression and resilience to stress: implications for prevention and treatment. Annu Rev Clin Psychol. 2005;1:255–91.

    Article  PubMed  Google Scholar 

  49. Folkman S, Lazarus RS. An analysis of coping in a middle-aged community sample. J Health Soc Behav. 1980;21:219–39.

    Article  CAS  PubMed  Google Scholar 

  50. Billings AG, Moos RH. Coping, stress, and social resources among adults with unipolar depression. J Pers Soc Psychol. 1984;46:877–91.

    Article  CAS  PubMed  Google Scholar 

  51. Hammels C, Pishva E, De Vry J, van den Hove DL, Prickaerts J, van Winkel R, et al. Defeat stress in rodents: from behavior to molecules. Neurosci Biobehav Rev. 2015;59:111–40.

    Article  CAS  PubMed  Google Scholar 

  52. Wood SK, Walker HE, Valentino RJ, Bhatnagar S. Individual differences in reactivity to social stress predict susceptibility and resilience to a depressive phenotype: role of corticotropin-releasing factor. Endocrinology. 2010;151:1795–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen RJ, Kelly G, Sengupta A, Heydendael W, Nicholas B, Beltrami S, et al. MicroRNAs as biomarkers of resilience or vulnerability to stress. Neuroscience. 2015;305:36–48.

    Article  CAS  PubMed  Google Scholar 

  54. Grafe LA, Eacret D, Dobkin J, Bhatnagar S. Reduced orexin system function contributes to resilience to repeated social stress. eNeuro. 2018;5:ENEURO.0273-17.2018.

  55. Diaz V, Lin D. Neural circuits for coping with social defeat. Curr Opin Neurobiol. 2020;60:99–107.

    Article  CAS  PubMed  Google Scholar 

  56. Willmore L, Cameron C, Yang J, Witten IB, Falkner AL. Behavioural and dopaminergic signatures of resilience. Nature. 2022;611:124–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murra D, Hilde KL, Fitzpatrick A, Maras PM, Watson SJ, Akil H. Characterizing the behavioral and neuroendocrine features of susceptibility and resilience to social stress. Neurobiol Stress. 2022;17:100437.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Meng QY, Chen XN, Tong DL, Zhou JN. Stress and glucocorticoids regulated corticotropin releasing factor in rat prefrontal cortex. Mol Cell Endocrinol. 2011;342:54–63.

    Article  CAS  PubMed  Google Scholar 

  59. Oh H, Newton D, Lewis D, Sibille E. Lower levels of GABAergic function markers in corticotropin-releasing hormone-expressing neurons in the sgACC of human subjects with depression. Front Psychiatry. 2022;13:827972.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Soumier A, Sibille E. Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice. Neuropsychopharmacology. 2014;39:2252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao P, Zhao M, Wang H, Jiang T, Jia X, Tian J, et al. Long-range inputome of cortical neurons containing corticotropin-releasing hormone. Sci Rep. 2020;10:12209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yu Long Li and Dr. Huan Wang (Peking University) for providing CRF sensor; Prof. Ji Liu (University of Science and Technology of China) for providing Crhr1-Cre and Crhr1flox/flox mice; Rui-Hua Li, Sen-Miao Fang and Jin-Kun Guo (Institute of Brain Science, the First Affiliated Hospital of Anhui Medical University) for help with the experiment.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 82471540; 32030046; 32200798; 82201671), Anhui Provincial Natural Science Foundation (2408085Y043).

Author information

Authors and Affiliations

Authors

Contributions

J-NZ and PC designed the research; Y-TW and YL performed most of the experiment and statistical analysis and wrote the draft manuscript; M-YL and YW preformed behavioral experiments and statistical analysis; Y-MZ and Q-QX contributed to electrophysiology in vitro; R-YL provided the reagents and helpful suggestions to the manuscript; Q-HS, X-YQ and YW modified the manuscript; J-NZ and PC supervised all aspects of the project and conducted a critical revision of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jiang-Ning Zhou or Peng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YT., Li, Y., Li, MY. et al. Prefrontal corticotropin-releasing factor promotes resilience to social stress. Neuropsychopharmacol. (2025). https://doi.org/10.1038/s41386-025-02148-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-025-02148-6

Search

Quick links