Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis

Abstract

Aberrant regulation of ubiquitination often leads to metabolic reprogramming in tumor cells. However, the underlying mechanisms are not fully understood. Here we demonstrate that OTUB2, an OTU deubiquitinase, is upregulated in colorectal cancer (CRC) and exacerbates the progression of CRC through modulating the aerobic glycolysis. Mechanistically, OTUB2 directly interacts with pyruvate kinase M2 (PKM2) and inhibits its ubiquitination by blocking the interaction between PKM2 and its ubiquitin E3 ligase Parkin, thereby enhancing PKM2 activity and promoting glycolysis. In response to glucose starvation stress, the effect of OTUB2 on PKM2 is enhanced, which confers metabolic advantage to CRC cells. Moreover, OTUB2 depletion reduces glucose consumption, lactate production, and cellular ATP production. OTUB2-knockout CRC cells exhibit attenuated proliferation and migration, as well as an elevated level of apoptosis and increased sensitivity to chemotherapy drugs. Furthermore, in vivo assays show that knockout of OTUB2 inhibits tumor growth in mice. Taken together, these findings reveal the critical role of OTUB2 in the regulation of glycolysis and illustrate the molecular mechanism underlying its role as a negative regulator of PKM2 ubiquitination in CRC, establishing a bridge between OTUB2-regulated PKM2 ubiquitination and altered metabolic patterns in CRC and suggesting that OTUB2 is a promising target for CRC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OTUB2 is highly expressed in CRC.
Fig. 2: OTUB2 interacts and colocalizes with PKM2.
Fig. 3: OTUB2 downregulates the ubiquitination of PKM2.
Fig. 4: OTUB2 inhibits ubiquitination of PKM2 by antagonizing the PKM2-Parkin interaction.
Fig. 5: OTUB2 enhances PKM2 metabolic enzymatic activity and glycolysis.
Fig. 6: OTUB2 promotes the development of CRC.
Fig. 7: A proposed model for OTUB2-mediated PKM2 deubiquitination in CRC.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet 2019;394:1467–80.

    Article  PubMed  Google Scholar 

  3. Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 2019;5:1749–68.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jiang W, Wang S, Xiao M, Lin Y, Zhou L, Lei Q, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell. 2011;43:33–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jin X, Pan Y, Wang L, Zhang L, Ravichandran R, Potts PR, et al. MAGE-TRIM28 complex promotes the Warburg effect and hepatocellular carcinoma progression by targeting FBP1 for degradation. Oncogenesis 2017;6:e312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Macintyre AN, Rathmell JC. PKM2 and the tricky balance of growth and energy in cancer. Mol Cell. 2011;42:713–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dang CV. PKM2 tyrosine phosphorylation and glutamine metabolism signal a different view of the Warburg effect. Sci Signal. 2009;2:pe75.

    Article  PubMed  Google Scholar 

  8. Dayton TL, Jacks T, Vander Heiden MG. PKM2, cancer metabolism, and the road ahead. EMBO Rep. 2016;17:1721–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal. 2009;2:ra73.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen M, Zhang J, Manley JL. Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res. 2010;70:8977–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 2012;14:1295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liang J, Cao R, Zhang Y, Xia Y, Zheng Y, Li X, et al. PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis. Nat Commun. 2016;7:12431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki N, et al. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell. 2013;52:340–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park S-H, Ozden O, Liu G, Song HY, Zhu Y, Yan Y, et al. SIRT2-mediated deacetylation and tetramerization of pyruvate kinase directs glycolysis and tumor growth. Cancer Res. 2016;76:3802–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qi H, Ning X, Yu C, Ji X, Jin Y, McNutt MA, et al. Succinylation-dependent mitochondrial translocation of PKM2 promotes cell survival in response to nutritional stress. Cell Death Dis. 2019;10:170.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Spoden GA, Morandell D, Ehehalt D, Fiedler M, Jansen-Durr P, Hermann M, et al. The SUMO-E3 ligase PIAS3 targets pyruvate kinase M2. J Cell Biochem. 2009;107:293–302.

    Article  CAS  PubMed  Google Scholar 

  17. Singh JP, Qian K, Lee JS, Zhou J, Han X, Zhang B, et al. O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth. Oncogene 2020;39:560–73.

    Article  CAS  PubMed  Google Scholar 

  18. Viana R, Lujan P, Sanz P. The laforin/malin E3-ubiquitin ligase complex ubiquitinates pyruvate kinase M1/M2. BMC Biochem. 2015;16:24.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu K, Li FZ, Han HC, Chen Y, Mao ZB, Luo JY, et al. Parkin Regulates the Activity of Pyruvate Kinase M2. J Biol Chem. 2016;291:10307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haglund K, Dikic I. Ubiquitylation and cell signaling. Embo J. 2005;24:3353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang B, Jie Z, Joo D, Ordureau A, Liu P, Gan W, et al. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature 2017;545:365–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai J, Li M, Wang X, Li L, Li Q, Hou Z, et al. USP37 promotes lung cancer cell migration by stabilizing snail protein via deubiquitination. Front in Genet. 2020;10:1324.

    Article  Google Scholar 

  23. Yuan L, Lv Y, Li H, Gao H, Song S, Zhang Y, et al. Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nat Cell Biol. 2015;17:1169–81.

    Article  CAS  PubMed  Google Scholar 

  24. Sobol A, Askonas C, Alani S, Weber MJ, Ananthanarayanan V, Osipo C, et al. Deubiquitinase OTUD6B isoforms are important regulators of growth and proliferation. Mol Cancer Res. 2017;15:117–27.

    Article  CAS  PubMed  Google Scholar 

  25. Lim KS, Li H, Roberts EA, Gaudiano EF, Clairmont C, Sambel LA, et al. USP1 is required for replication fork protection in BRCA1-deficient tumors. Mol Cell.2018;72:41 e4.

    Article  Google Scholar 

  26. Kwasna D, Abdul Rehman SA, Natarajan J, Matthews S, Madden R, De Cesare V, et al. Discovery and characterization of ZUFSP/ZUP1, a distinct deubiquitinase class important for genome stability. Mol Cell. 2018;70:150–64 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harper JW, Ordureau A, Heo JM. Building and decoding ubiquitin chains for mitophagy. Nat Rev Mol Cell Biol. 2018;19:93–108.

    Article  CAS  PubMed  Google Scholar 

  28. Ordureau A, Paulo JA, Zhang J, An H, Swatek KN, Cannon JR, et al. Global landscape and dynamics of parkin and USP30-dependent ubiquitylomes in ineurons during mitophagic signaling. Mol Cell. 2020;77:1124–42 e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clague MJ, Urbe S, Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol. 2019;20:338–52.

    Article  CAS  PubMed  Google Scholar 

  30. Novellasdemunt L, Foglizzo V, Cuadrado L, Antas P, Kucharska A, Encheva V, et al. USP7 is a tumor-specific WNT activator for APC-mutated colorectal cancer by mediating β-catenin deubiquitination. Cell Rep. 2017;21:612–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xing C, Lu X-X, Guo P-D, Shen T, Zhang S, He X-S, et al. Ubiquitin-specific protease 4-mediated deubiquitination and stabilization of PRL-3 is required for potentiating colorectal oncogenesis. Cancer Res. 2016;76:83–95.

    Article  CAS  PubMed  Google Scholar 

  32. Diefenbacher ME, Popov N, Blake SM, Schulein-Volk C, Nye E, Spencer-Dene B, et al. The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J Clin Invest. 2014;124:3407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beck A, Vinik Y, Shatz-Azoulay H, Isaac R, Streim S, Jona G, et al. Otubain 2 is a novel promoter of beta cell survival as revealed by siRNA high-throughput screens of human pancreatic islets. Diabetologia 2013;56:1317–26.

    Article  CAS  PubMed  Google Scholar 

  34. Ma Y, Sun Y. miR-29a-3p inhibits growth, proliferation, and invasion of papillary thyroid carcinoma by suppressing NF-kappaB signaling via direct targeting of OTUB2. Cancer Manag Res. 2019;11:13–23.

    Article  CAS  PubMed  Google Scholar 

  35. Li S, Zheng H, Mao AP, Zhong B, Li Y, Liu Y, et al. Regulation of virus-triggered signaling by OTUB1-and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. J Biol Chem. 2010;285:4291–7.

    Article  CAS  PubMed  Google Scholar 

  36. Kato K, Nakajima K, Ui A, Muto-Terao Y, Ogiwara H, Nakada S. Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice. Mol Cell. 2014;53:617–30.

    Article  CAS  PubMed  Google Scholar 

  37. Johmura Y, Yamashita E, Shimada M, Nakanishi K, Nakanishi M. Defective DNA repair increases susceptibility to senescence through extension of Chk1-mediated G2 checkpoint activation. Sci Rep. 2016;6:31194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li XY, Mao XF, Tang XQ, Han QQ, Jiang LX, Qiu YM, et al. Regulation of Gli2 stability by deubiquitinase OTUB2. Biochem Bioph Res Co. 2018;505:113–8.

    Article  CAS  Google Scholar 

  39. Li J, Cheng D, Zhu M, Yu H, Pan Z, Liu L, et al. OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the AKT/mTOR signaling pathway in non-small cell lung cancer. Theranostics 2019;9:179–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang Z, Du J, Wang S, Shao L, Jin K, Li F, et al. OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ. Mol Cell. 2019;73:7–21 e7.

    Article  CAS  PubMed  Google Scholar 

  41. Gu ZL, Huang J, Zhen LL. Knockdown of otubain 2 inhibits liver cancer cell growth by suppressing NF-kappaB signaling. Kaohsiung J Med Sci. 2020;36:399–404.

    Article  CAS  PubMed  Google Scholar 

  42. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee HJ, Li CF, Ruan D, He J, Montal ED, Lorenz S, et al. Non-proteolytic ubiquitination of Hexokinase 2 by HectH9 controls tumor metabolism and cancer stem cell expansion. Nat Commun. 2019;10:2625.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Feng Y, Zhang Y, Cai Y, Liu R, Lu M, Li T, et al. A20 targets PFKL and glycolysis to inhibit the progression of hepatocellular carcinoma. Cell Death Dis. 2020;11:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoshino S, Hara T, Nakaoka HJ, Kanamori A, Murakami Y, Seiki M, et al. The ERK signaling target RNF126 regulates anoikis resistance in cancer cells by changing the mitochondrial metabolic flux. Cell Disco. 2016;2:16019.

    Article  CAS  Google Scholar 

  46. Han C, Yang L, Choi HH, Baddour J, Achreja A, Liu Y, et al. Amplification of USP13 drives ovarian cancer metabolism. Nat Commun. 2016;7:13525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shang Y, He J, Wang Y, Feng Q, Zhang Y, Guo J, et al. CHIP/Stub1 regulates the Warburg effect by promoting degradation of PKM2 in ovarian carcinoma. Oncogene 2017;36:4191–200.

    Article  CAS  PubMed  Google Scholar 

  48. Yuan P, Zhou Y, Wang R, Chen S, Wang Q, Xu Z, et al. TRIM58 interacts with pyruvate kinase M2 to inhibit tumorigenicity in human osteosarcoma cells. BioMed Res Int. 2020;2020:8450606.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Choi H-S, Pei C-Z, Park J-H, Kim S-Y, Song S-Y, Shin G-J, et al. Protein stability of pyruvate kinase isozyme M2 is mediated by HAUSP. Cancers 2020;12:1548.

    Article  CAS  PubMed Central  Google Scholar 

  50. Kim SR, Kim JO, Lim KH, Yun JH, Han I, Baek KH. Regulation of pyruvate kinase isozyme M2 is mediated by the ubiquitin-specific protease 20. Int J Oncol. 2015;46:2116–24.

    Article  CAS  PubMed  Google Scholar 

  51. Liu F, Ma F, Wang Y, Hao L, Zeng H, Jia C, et al. PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat Cell Biol. 2017;19:1358–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Liu J, Jin X, Zhang D, Li D, Hao F, et al. O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. Proc Natl Acad Sci USA. 2017;114:13732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Das Gupta K, Shakespear MR, Curson JEB, Murthy AMV, Iyer A, Hodson MP, et al. Class IIa histone deacetylases drive toll-like receptor-inducible glycolysis and macrophage inflammatory responses via pyruvate kinase M2. Cell Rep. 2020;30:2712–28 e8.

    Article  PubMed  Google Scholar 

  54. Hou PP, Luo LJ, Chen HZ, Chen QT, Bian XL, Wu SF, et al. Ectosomal PKM2 oromotes HCC by inducing macrophage differentiation and remodeling the tumor microenvironment. Mol Cell. 2020;78:1192–206 e10.

    Article  CAS  PubMed  Google Scholar 

  55. Bhardwaj A, Das S. SIRT6 deacetylates PKM2 to suppress its nuclear localization and oncogenic functions. Proc Natl Acad Sci USA. 2016;113:E538–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Iansante V, Choy PM, Fung SW, Liu Y, Chai JG, Dyson J, et al. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nat Commun. 2015;6:7882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee SB, Kim JJ, Han SA, Fan Y, Guo LS, Aziz K, et al. The AMPK-Parkin axis negatively regulates necroptosis and tumorigenesis by inhibiting the necrosome. Nat Cell Biol. 2019;21:940–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu J, Zhang C, Wu H, Sun XX, Li Y, Huang S, et al. Parkin ubiquitinates phosphoglycerate dehydrogenase to suppress serine synthesis and tumor progression. J Clin Invest. 2020;130:3253–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 2011;480:118–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang L, et al. EGFR-induced and PKCepsilon monoubiquitylation-dependent NF-kappaB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell. 2012;48:771–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 81730080 and 82130081), Beijing Natural Science Foundation (5212008), and the National Key Research and Development Program of China (grant no. 2016YFC1302401). We sincerely thank Prof. Lingqiang Zhang for providing human deubiquitinase OTU subfamily plasmids, Prof. Wensheng Wei for providing the CRISPR/Cas9 related plasmids, Prof. Jianguo Ji for providing HT-29 cell line, Prof. Dajun Deng for providing CCD-18Co cell line, Prof. Binghui Li for providing FHC cell line, and Prof. Zhijie Chang for providing NCM460 and DLD-1 cell lines. We thank the National Center for Protein Sciences at Peking University, particularly Guilan Li, Jia Luo, Yinghua Guo, Liying Du and Hongxia Lv for technical help. We also appreciate the assistance of Dong Liu, Xiaochen Li and Liqin Fu from the Core Facilities of Life Sciences at Peking University for their assistance with the protein MS analysis work and microscopic imaging.

Author information

Authors and Affiliations

Authors

Contributions

SY designed the experiments, analyzed the data, and wrote the manuscript. SY, WZ, and LL performed the experiments. YQ and SY performed the bioinformatics analysis. XZ supervised this study and wrote the manuscript.

Corresponding author

Correspondence to Xiaofeng Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Zang, W., Qiu, Y. et al. Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene 41, 46–56 (2022). https://doi.org/10.1038/s41388-021-02071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02071-2

This article is cited by

Search

Quick links