Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hyperactivated YAP1 is essential for sustainable progression of renal clear cell carcinoma

Abstract

The most notable progress in renal clear cell carcinoma (ccRCC) in the past decades is the introduction of drugs targeting the VHL-HIF signaling pathway-associated angiogenesis. However, mechanisms underlying the development of VHL mutation-independent ccRCC are unclear. Here we provide evidence that the disrupted Hippo-YAP signaling contributes to the development of ccRCC independent of VHL alteration. We found that YAP1 and its primary target genes are frequently upregulated in ccRCC and the upregulation of these genes is associated with unfavorable patient outcomes. Research results derived from our in vitro and in vivo experimental models demonstrated that, under normoxic conditions, hyperactivated YAP1 drives the expression of FGFs to stimulate the proliferation of tumor and tumor-associated endothelial cells in an autocrine/paracrine manner. When rapidly growing cancer cells create a hypoxic environment, hyperactivated YAP1 in cancer cells induces the production of VEGF, which promotes the angiogenesis of tumor-associated endothelial cells, leading to improved tumor microenvironment and continuous tumor growth. Our study indicates that hyperactivated YAP1 is essential for maintaining ccRCC progression, and targeting the dual role of hyperactivated YAP1 represents a novel strategy to improve renal carcinoma therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: YAP1 activation is associated with ccRCC progression.
Fig. 2: YAP1 stimulates the proliferation of renal carcinoma cells in vitro and in vivo.
Fig. 3: Enrichment of the genes and pathways involved in angiogenesis during YAP1-induced ccRCC progression.
Fig. 4: YAP1 and FGF form a feed-forward loop to drive the proliferation of renal cancer cells.
Fig. 5: YAP1 is required for basal and FGF-mediated endothelial cell proliferation and function.
Fig. 6: YAP1 is essential for VEGF-induced proliferation of kidney tumor-associated endothelial cells.
Fig. 7: Targeting the dual role of YAP1 inhibits kidney tumor growth in xenograft mouse models.
Fig. 8: A schematic diagram showing mechanisms by which YAP promotes ccRCC development.

Similar content being viewed by others

Data availability

The raw and processed RNAseq data generated in this study have been deposited in the NCBI Gene Expression Omnibus (GEO) database under the accession number/code GSE290118. Other data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  4. Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med. 2005;353:2477–90.

    Article  CAS  PubMed  Google Scholar 

  5. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.

    Article  CAS  PubMed  Google Scholar 

  6. Linehan WM, Srinivasan R, Schmidt LS. The genetic basis of kidney cancer: a metabolic disease. Nature Rev Urol. 2010;7:277–85.

    Article  CAS  Google Scholar 

  7. Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M, de Bruine AP. VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 2010;221:125–38.

    Article  CAS  PubMed  Google Scholar 

  8. Li H, Ge C, Zhao F, Yan M, Hu C, Jia D, et al. Hypoxia-inducible factor 1 alpha-activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule-1/integrin beta1 signaling in human hepatocellular carcinoma. Hepatology. 2011;54:910–9.

    Article  CAS  PubMed  Google Scholar 

  9. Golijanin B, Malshy K, Khaleel S, Lagos G, Amin A, Cheng L, et al. Evolution of the HIF targeted therapy in clear cell renal cell carcinoma. Cancer Treat Rev. 2023;121:102645.

    Article  CAS  PubMed  Google Scholar 

  10. Kase AM, George DJ, Ramalingam S. Clear cell renal cell carcinoma: from biology to treatment. Cancers. 2023;15:665.

  11. Rapisarda A, Melillo G. Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nat Rev Clin Oncol. 2012;9:378–90.

    Article  CAS  PubMed  Google Scholar 

  12. Rioja P, Rey-Cardenas M, De Velasco G. Targeting HIF-2alpha and anemia: a therapeutic breakthrough for clear-cell renal cell carcinoma. Cancer Treat Rev. 2024;129:102801.

    Article  CAS  PubMed  Google Scholar 

  13. Kim H, Shim BY, Lee SJ, Lee JY, Lee HJ, Kim IH Loss of von Hippel-Lindau (VHL) Tumor suppressor gene function: VHL-HIF pathway and advances in treatments for metastatic renal cell carcinoma (RCC). Int J Mol Sci. 2021;22:9795.

  14. Kuczynski EA, Reynolds AR. Vessel co-option and resistance to anti-angiogenic therapy. Angiogenesis. 2020;23:55–74.

    Article  CAS  PubMed  Google Scholar 

  15. Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR. Vessel co-option in cancer. Nat Rev Clin Oncol. 2019;16:469–93.

    Article  CAS  PubMed  Google Scholar 

  16. Luo Q, Wang J, Zhao W, Peng Z, Liu X, Li B, et al. Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol. 2020;13:19.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, et al. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer. 2021;20. 7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19:491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harvey K, Tapon N. The Salvador-Warts-Hippo pathway—an emerging tumour-suppressor network. Nat Rev Cancer. 2007;7:182–91.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao B, Li L, Lei Q, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 2010;24:862–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu FX, Guan KL. The Hippo pathway: regulators and regulations. Genes Dev. 2013;27:355–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130:1120–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 2007;17:2054–60.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer cell. 2009;16:425–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee KP, Lee JH, Kim TS, Kim TH, Park HD, Byun JS, et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci USA. 2010;107:8248–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q, et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci USA. 2010;107:1437–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lv X, He C, Huang C, Hua G, Chen X, Timm BK, et al. Reprogramming of ovarian granulosa cells by YAP1 leads to development of high-grade cancer with mesenchymal lineage and serous features. Sci Bull. 2020;65:1281–96.

    Article  CAS  Google Scholar 

  29. Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019;569:503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fu D, Lv X, Hua G, He C, Dong J, Lele SM, et al. YAP regulates cell proliferation, migration, and steroidogenesis in adult granulosa cell tumors. Endocr Relat Cancer. 2014;21:297–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang C, Lv X, He C, Hua G, Tsai MY, Davis JS. The G-protein-coupled estrogen receptor agonist G-1 suppresses proliferation of ovarian cancer cells by blocking tubulin polymerization. Cell Death Dis. 2013;4:e869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hua G, He C, Lv X, Fan L, Wang C, Remmenga SW, et al. The four and a half LIM domains 2 (FHL2) regulates ovarian granulosa cell tumor progression via controlling AKT1 transcription. Cell Death Dis. 2016;7:e2297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang C, Lv X, Chen P, Liu J, He C, Chen L, et al. Human papillomavirus targets the YAP1-LATS2 feedback loop to drive cervical cancer development. Oncogene. 2022;41:3761–77.

  34. Zentgraf J, Rahmann S. Fast lightweight accurate xenograft sorting. Algorithms Mol Biol. 2021;16:2.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;26:1300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lv X, He C, Huang C, Hua G, Wang Z, Remmenga SW, et al. G-1 inhibits breast cancer cell growth via targeting colchicine-binding site of tubulin to interfere with microtubule assembly. Mol Cancer Ther. 2017;16:1080–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang C, Lv X, Jiang C, Davis JS. The putative G-protein coupled estrogen receptor agonist G-1 suppresses proliferation of ovarian and breast cancer cells in a GPER-independent manner. Am J Transl Res. 2012;4:390–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Geindreau M, Bruchard M, Vegran F. Role of cytokines and chemokines in angiogenesis in a tumor context. Cancers. 2022;14:2446.

  40. Kuwano M, Fukushi J, Okamoto M, Nishie A, Goto H, Ishibashi T, et al. Angiogenesis factors. Intern Med. 2001;40:565–72.

    Article  CAS  PubMed  Google Scholar 

  41. Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 2023;8:198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Patel SA, Nilsson MB, Le X, Cascone T, Jain RK, Heymach JV. Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clin Cancer Res. 2023;29:30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res. 2003;93:1074–81.

    Article  CAS  PubMed  Google Scholar 

  44. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84.

    Article  CAS  PubMed  Google Scholar 

  45. Bukowski RM, Yasothan U, Kirkpatrick P. Pazopanib. Nat Rev Drug Discov. 2010;9:17–8.

    Article  CAS  PubMed  Google Scholar 

  46. Gossage L, Eisen T. Alterations in VHL as potential biomarkers in renal-cell carcinoma. Nature Rev Clin Oncol. 2010;7:277–88.

    Article  CAS  Google Scholar 

  47. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 2018;173:291–304.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al. Renal cell carcinoma. Nat Rev Dis Prim. 2017;3:17009.

    Article  PubMed  Google Scholar 

  49. Rankin EB, Tomaszewski JE, Haase VH. Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res. 2006;66:2576–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ryan MJ, Johnson G, Kirk J, Fuerstenberg SM, Zager RA, Torok-Storb B. HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int. 1994;45:48–57.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou D, Zhang Y, Wu H, Barry E, Yin Y, Lawrence E, et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci USA. 2011;108:E1312–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Steinhardt AA, Gayyed MF, Klein AP, Dong J, Maitra A, Pan D, et al. Expression of Yes-associated protein in common solid tumors. Hum Pathol. 2008;39:1582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang L, Yang S, Chen X, Stauffer S, Yu F, Lele SM, et al. The hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells. Molecular Cell Biol. 2015;35:1350–62.

    Article  CAS  Google Scholar 

  54. He C, Mao D, Hua G, Lv X, Chen X, Angeletti PC, et al. The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression. EMBO Mol Med. 2015;7:1426–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hua G, Lv X, He C, Remmenga SW, Rodabough KJ, Dong J, et al. YAP induces high-grade serous carcinoma in fallopian tube secretory epithelial cells. Oncogene. 2016;35:2247–65.

    Article  CAS  PubMed  Google Scholar 

  56. He C, Lv X, Huang C, Angeletti PC, Hua G, Dong J, et al. A Human papillomavirus-independent cervical cancer animal model reveals unconventional mechanisms of cervical carcinogenesis. Cell Rep. 2019;26:2636–50 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    Article  CAS  PubMed  Google Scholar 

  58. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer cell. 2016;29:783–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. He C, Lv X, Huang C, Hua G, Ma B, Chen X, et al. YAP1-LATS2 feedback loop dictates senescent or malignant cell fate to maintain tissue homeostasis. EMBO Rep. 2019;20:e44948.

  60. He C, Lv X, Hua G, Lele SM, Remmenga S, Dong J, et al. YAP forms autocrine loops with the ERBB pathway to regulate ovarian cancer initiation and progression. Oncogene. 2015;34:6040–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cao JJ, Zhao XM, Wang DL, Chen KH, Sheng X, Li WB, et al. YAP is overexpressed in clear cell renal cell carcinoma and its knockdown reduces cell proliferation and induces cell cycle arrest and apoptosis. Oncol Rep. 2014;32:1594–600.

    Article  CAS  PubMed  Google Scholar 

  62. Qu L, Wu Z, Li Y, Xu Z, Liu B, Liu F, et al. A feed-forward loop between lncARSR and YAP activity promotes expansion of renal tumour-initiating cells. Nat Commun. 2016;7. 12692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang R, Zheng B, Liu H, Wan X. Long non-coding RNA PCAT1 drives clear cell renal cell carcinoma by upregulating YAP via sponging miR-656 and miR-539. Cell Cycle. 2020;19:1122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu S, Yang Y, Wang W, Pan X. Long noncoding RNA TUG1 promotes cell proliferation and migration of renal cell carcinoma via regulation of YAP. J Cell Biochem. 2018;119:9694–706.

    Article  CAS  PubMed  Google Scholar 

  65. Ruan H, Bao L, Song Z, Wang K, Cao Q, Tong J, et al. High expression of TAZ serves as a novel prognostic biomarker and drives cancer progression in renal cancer. Exp Cell Res. 2019;376:181–91.

    Article  CAS  PubMed  Google Scholar 

  66. Schutte U, Bisht S, Heukamp LC, Kebschull M, Florin A, Haarmann J, et al. Hippo signaling mediates proliferation, invasiveness, and metastatic potential of clear cell renal cell carcinoma. Transl Oncol. 2014;7:309–21.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rybarczyk A, Klacz J, Wronska A, Matuszewski M, Kmiec Z, Wierzbicki PM. Overexpression of the YAP1 oncogene in clear cell renal cell carcinoma is associated with poor outcome. Oncol Rep. 2017;38:427–39.

    Article  CAS  PubMed  Google Scholar 

  68. Matsuura K, Nakada C, Mashio M, Narimatsu T, Yoshimoto T, Tanigawa M, et al. Downregulation of SAV1 plays a role in pathogenesis of high-grade clear cell renal cell carcinoma. BMC Cancer. 2011;11:523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Godlewski J, Kiezun J, Krazinski BE, Kozielec Z, Wierzbicki PM, Kmiec Z. The Immunoexpression of YAP1 and LATS1 Proteins in Clear Cell Renal Cell Carcinoma: Impact on Patients’ Survival. Biomed Res Int. 2018;2018:2653623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hu X, Chen J, Fu Q. Downregulation of YAP in clear cell renal cell carcinoma contributes to poor prognosis and progressive features. Ann Clin Lab Sci. 2017;47:36–9.

    CAS  PubMed  Google Scholar 

  71. Duong NX, Le MK, Kondo T, Mitsui T. Heterogeneity of Hippo signalling activity in different histopathologic subtypes of renal cell carcinoma. J Cell Mol Med. 2023;27:66–75.

    Article  CAS  PubMed  Google Scholar 

  72. Molitoris KH, Kazi AA, Koos RD. Inhibition of oxygen-induced hypoxia-inducible factor-1alpha degradation unmasks estradiol induction of vascular endothelial growth factor expression in ECC-1 cancer cells in vitro. Endocrinology. 2009;150:5405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang X, Li Y, Ma Y, Yang L, Wang T, Meng X, et al. Yes-associated protein (YAP) binds to HIF-1alpha and sustains HIF-1alpha protein stability to promote hepatocellular carcinoma cell glycolysis under hypoxic stress. J Exp Clin Cancer Res. 2018;37:216.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang Y, Narayanan SP, Mannan R, Raskind G, Wang X, Vats P, et al. Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. Proc Natl Acad Sci USA. 2021;118:e2103240118.

  75. Jubb AM, Pham TQ, Hanby AM, Frantz GD, Peale FV, Wu TD, et al. Expression of vascular endothelial growth factor, hypoxia inducible factor 1alpha, and carbonic anhydrase IX in human tumours. J Clin Pathol. 2004;57:504–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sternberg CN, Hawkins RE, Wagstaff J, Salman P, Mardiak J, Barrios CH, et al. A randomised, double-blind phase III study of pazopanib in patients with advanced and/or metastatic renal cell carcinoma: final overall survival results and safety update. Eur J Cancer. 2013;49:1287–96.

    Article  CAS  PubMed  Google Scholar 

  77. Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R, Guo J, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013;369:722–31.

    Article  CAS  PubMed  Google Scholar 

  78. Motzer RJ, Nosov D, Eisen T, Bondarenko I, Lesovoy V, Lipatov O, et al. Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: results from a phase III trial. J Clin Oncol. 2013;31:3791–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Choueiri TK, Halabi S, Sanford BL, Hahn O, Michaelson MD, Walsh MK, et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the alliance A031203 CABOSUN trial. J Clin Oncol. 2017;35:591–7.

    Article  CAS  PubMed  Google Scholar 

  80. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ribatti D, Solimando AG, Pezzella F. The anti-VEGF(R) drug discovery legacy: improving attrition rates by breaking the vicious cycle of angiogenesis in cancer. Cancers. 2021;13:3433.

  82. Shao Y, Lu B. The emerging roles of circular RNAs in vessel co-option and vasculogenic mimicry: clinical insights for anti-angiogenic therapy in cancers. Cancer Metastasis Rev. 2022;41:173–91.

    Article  CAS  PubMed  Google Scholar 

  83. Geng B, Liu W, Wang J, Zhang W, Li Z, Zhang N, et al. The categorizations of vasculogenic mimicry in clear cell renal cell carcinoma unveil inherent connections with clinical and immune features. Front Pharm. 2023;14:1333507.

    Article  CAS  Google Scholar 

  84. Gibault F, Corvaisier M, Bailly F, Huet G, Melnyk P, Cotelle P. Non-Photoinduced biological properties of verteporfin. Curr Med Chem. 2016;23:1171–84.

    Article  CAS  PubMed  Google Scholar 

  85. Schein OD, Bressler NM, Price P. Photodynamic therapy with verteporfin: observations on the introduction of a new treatment into clinical practice. Arch Ophthalmol. 2005;123:58–63.

    Article  CAS  PubMed  Google Scholar 

  86. Bhandari V, Li CH, Bristow RG, Boutros PC, Consortium P. Divergent mutational processes distinguish hypoxic and normoxic tumours. Nat Commun. 2020;11. 737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Cancer Institute/National Institute of Health (1R01CA197976, 1R01CA201500, and 5R01CA279385), University of Nebraska Medical Center Graduate student Fellowship, the Olson Center for Women’s Health (no number), The Fred & Pamela Buffett Cancer Center (Lb595), the Colleen’s Dream Foundation (no number), the Ruggles Family Foundation, VA Senior Research Career Scientist Award, IK6 BX005797, and the Vincent Memorial Hospital Foundation/Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital (No number).

Author information

Authors and Affiliations

Authors

Contributions

XL contributed to the conceptualization, experimental design and performance, data analysis, and manuscript preparation; JL contributed to RNA-seq, sequencing data analysis, and manuscript preparation; JR and KI contributed to cell culture, western blotting, tube formation, immunohistochemical analyses, and manuscript review; CH (Chunbo He) and GH, and C.H. (Cong Huang) contributed to viral package, 3D culture, tube formation assay, animal model development, and manuscript review. PC, HW, AD, XZ, DS, MM, SM, IM, ER., BC, LC, XC conducted real-time PCR and histological analyses and reviewed the manuscript. SY contributed to bioinformatics analysis; JSD contributed to data interpretation and manuscript review; CW supervised these studies and contributed to the conceptualization, experimental design, data analysis/interpretation, and manuscript preparation.

Corresponding author

Correspondence to Cheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Xenograft tumor mouse models were generated and used to examine the role of hyperactivated YAP1 oncoprotein in ccRCC progression. Mouse handling and all experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Nebraska Medical Center (UNMC) and Massachusetts General Hospital (MGH). No human subjects were involved in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Liu, J., Islam, K. et al. Hyperactivated YAP1 is essential for sustainable progression of renal clear cell carcinoma. Oncogene 44, 2142–2157 (2025). https://doi.org/10.1038/s41388-025-03354-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-025-03354-8

Search

Quick links