Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Syntaxin-6 mediated autophagy confers lenvatinib resistance in hepatocellular carcinoma

Abstract

Lenvatinib is the first-line therapy for inoperable HCC. However, intrinsic and acquired drug resistance occurs during the treatment period. Autophagy is an adaptive response that favors tumor survival under stress. In the present study, we aim to reveal the unknown autophagic engagement in lenvatinib resistance. Lenvatinib-resistant HCC cell lines and xenograft mouse HCC models were established to identify the key regulator of lenvatinib resistance in HCC. By in vitro functional restoration assays and autophagic flux detection, we demonstrated that the Syntaxin-6 (STX6) -mediated autophagy induced lenvatinib resistance of HCC cells. Mechanistically, Co-immunoprecipitation assay and mass spectrometry indicated that the interactions of STX6 with Beclin1, VTI1A, and VAMP3 facilitated autophagy, leading to the lenvatinib resistance. Additionally, STX6 enhanced the ability of proliferation, migration, and invasion of HCC in vitro and in vivo. Clinically, STX6 expression was significantly elevated in HCC tissues compared to it in para-tumor tissues. High STX6 expression predicted poor outcomes for patients following resection. Moreover, high expression of STX6 displayed low preventive efficacy of lenvatinib as a postoperative adjuvant treatment for HCC patients with a high risk of recurrence. Collectively, we identified that STX6-mediated autophagy plays a crucial role in lenvatinib resistance in HCC, providing a potential therapeutic target to overcome lenvatinib resistance for HCC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STX6 confers lenvatinib resistance of HCC.
Fig. 2: Lenvatinib induces autophagy in HCC cells.
Fig. 3: Lenvatinib-induced autophagy is mediated by STX6.
Fig. 4: Interaction of STX6 with Beclin1, VTI1A, and VAMP3 facilitates autophagy to confer lenvatinib resistance.
Fig. 5: STX6 promotes HCC progression.
Fig. 6: High expression of STX6 predicts poor prognosis of patients with HCC and resistance to lenvatinib adjuvant treatment.

Similar content being viewed by others

Data availability

The RNA sequencing data of lenvatinib-resistant and their corresponding parental HCC cells have been publicly deposited at Gene Expression Omnibus (GEO accession number: GSE285575). All data are contained within the article. Requests for reagents should be addressed to Shao-Qiang Li ([email protected]).

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589–604.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang C, Zhang H, Zhang L, Zhu AX, Bernards R, Qin W, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2023;20:203–22.

    Article  PubMed  Google Scholar 

  4. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391:1163–73.

    Article  CAS  PubMed  Google Scholar 

  5. Vogel A, Qin S, Kudo M, Su Y, Hudgens S, Yamashita T, et al. Lenvatinib versus sorafenib for first-line treatment of unresectable hepatocellular carcinoma: patient-reported outcomes from a randomised, open-label, non-inferiority, phase 3 trial. Lancet Gastroenterol Hepatol. 2021;6:649–58.

    Article  PubMed  Google Scholar 

  6. Strumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Tewes M, et al. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol. 2005;23:965–72.

    Article  CAS  PubMed  Google Scholar 

  7. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Cheng AL, et al. Overall survival and objective response in advanced unresectable hepatocellular carcinoma: a subanalysis of the REFLECT study. J Hepatol. 2023;78:133–41.

    Article  CAS  PubMed  Google Scholar 

  8. Abdrakhmanov A, Gogvadze V, Zhivotovsky B. To eat or to die: deciphering selective forms of autophagy. Trends Biochem Sci. 2020;45:347–64.

    Article  CAS  PubMed  Google Scholar 

  9. Maes H, Rubio N, Garg AD, Agostinis P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med. 2013;19:428–46.

    Article  CAS  PubMed  Google Scholar 

  10. Qureshi-Baig K, Kuhn D, Viry E, Pozdeev VI, Schmitz M, Rodriguez F, et al. Hypoxia-induced autophagy drives colorectal cancer initiation and progression by activating the PRKC/PKC-EZR (ezrin) pathway. Autophagy. 2020;16:1436–52.

    Article  CAS  PubMed  Google Scholar 

  11. Lv Y, Zhang W, Zhao J, Sun B, Qi Y, Ji H, et al. SRSF1 inhibits autophagy through regulating Bcl-x splicing and interacting with PIK3C3 in lung cancer. Signal Transduct Target Ther. 2021;6:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bernardini JP, Brouwer JM, Tan IK, Sandow JJ, Huang S, Stafford CA, et al. Parkin inhibits BAK and BAX apoptotic function by distinct mechanisms during mitophagy. Embo J. 2019;38:e99916.

  13. Zhang SF, Wang XY, Fu ZQ, Peng QH, Zhang JY, Ye F, et al. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer. Autophagy. 2015;11:225–38.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tong M, Che N, Zhou L, Luk ST, Kau PW, Chai S, et al. Efficacy of annexin A3 blockade in sensitizing hepatocellular carcinoma to sorafenib and regorafenib. J Hepatol. 2018;69:826–39.

    Article  CAS  PubMed  Google Scholar 

  15. Xue ST, Li K, Gao Y, Zhao LY, Gao Y, Yi H, et al. The role of the key autophagy kinase ULK1 in hepatocellular carcinoma and its validation as a treatment target. Autophagy. 2020;16:1823–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pan J, Zhang M, Dong L, Ji S, Zhang J, Zhang S, et al. Genome-scale CRISPR screen identifies LAPTM5 driving lenvatinib resistance in hepatocellular carcinoma. Autophagy. 2023;19:1184–98.

    Article  CAS  PubMed  Google Scholar 

  17. Wu FQ, Fang T, Yu LX, Lv GS, Lv HW, Liang D, et al. ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1α. J Hepatol. 2016;65:314–24.

    Article  CAS  PubMed  Google Scholar 

  18. Reverter M, Rentero C, Garcia-Melero A, Hoque M, Vilà de Muga S, Alvarez-Guaita A, et al. Cholesterol regulates Syntaxin 6 trafficking at trans-Golgi network endosomal boundaries. Cell Rep. 2014;7:883–97.

    Article  CAS  PubMed  Google Scholar 

  19. Koike S, Jahn R. SNAREs define targeting specificity of trafficking vesicles by combinatorial interaction with tethering factors. Nat Commun. 2019;10:1608.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nozawa T, Minowa-Nozawa A, Aikawa C, Nakagawa I. The STX6-VTI1B-VAMP3 complex facilitates xenophagy by regulating the fusion between recycling endosomes and autophagosomes. Autophagy. 2017;13:57–69.

    Article  CAS  PubMed  Google Scholar 

  21. Deng G, Li C, Chen L, Xing C, Fu C, Qian C, et al. BECN2 (beclin 2) negatively regulates inflammasome sensors through ATG9A-Dependent but ATG16L1- and LC3-independent non-canonical autophagy. Autophagy. 2022;18:340–56.

    Article  CAS  PubMed  Google Scholar 

  22. Li W, Li K, Wei H, Sun Y, Liao Y, Zou Y, et al. Syntaxin-6, a reliable biomarker for predicting the prognosis of patients with cancer and the effectiveness of immunotherapy. Cancers. 2022;15:27.

  23. Zhou L, Wang Z, Chen X, Li X, Ge C, Min X, et al. Syntaxin-6 promotes the progression of hepatocellular carcinoma and alters its sensitivity to chemotherapies by activating the USF2/LC3B axis. Int J Biol Sci. 2023;19:3892–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moreno-Smith M, Halder JB, Meltzer PS, Gonda TA, Mangala LS, Rupaimoole R, et al. ATP11B mediates platinum resistance in ovarian cancer. J Clin Investig. 2013;123:2119–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu XF, Xing H, Han J, Li ZL, Lau WY, Zhou YH, et al. Risk factors, patterns, and outcomes of late recurrence after liver resection for hepatocellular carcinoma: a multicenter study from China. JAMA Surg. 2019;154:209–17.

    Article  PubMed  Google Scholar 

  26. Anlaş AA, Nelson CM. Soft microenvironments induce chemoresistance by increasing autophagy downstream of integrin-linked kinase. Cancer Res. 2020;80:4103–13.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang S, Liu X, Abdulmomen Ali Mohammed S, Li H, Cai W, Guan W, et al. Adaptor SH3BGRL drives autophagy-mediated chemoresistance through promoting PIK3C3 translation and ATG12 stability in breast cancers. Autophagy. 2022;18:1822–40.

    Article  CAS  PubMed  Google Scholar 

  28. Meng J, Liu K, Shao Y, Feng X, Ji Z, Chang B, et al. ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy. Cell Death Dis. 2020;11:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang F, Hilakivi-Clarke L, Shaha A, Wang Y, Wang X, Deng Y, et al. Metabolic reprogramming and its clinical implication for liver cancer. Hepatology. 2023;78:1602–24.

    Article  PubMed  Google Scholar 

  30. Kimura T, Jia J, Kumar S, Choi SW, Gu Y, Mudd M, et al. Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. Embo J. 2017;36:42–60.

    Article  CAS  PubMed  Google Scholar 

  31. Song Z, Zhang G, Yu Y, Li S. A prognostic autophagy-related gene pair signature and small-molecule drugs for hepatocellular carcinoma. Front Genet. 2021;12:689801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Q, Xiong L, Wei T, Liu Q, Yan L, Chen J, et al. Hypoxia-responsive PPARGC1A/BAMBI/ACSL5 axis promotes progression and resistance to lenvatinib in hepatocellular carcinoma. Oncogene. 2023;42:1509–23.

    Article  CAS  PubMed  Google Scholar 

  33. Huang M, Long J, Yao Z, Zhao Y, Zhao Y, Liao J, et al. METTL1-Mediated m7G tRNA Modification Promotes Lenvatinib Resistance in Hepatocellular Carcinoma. Cancer Res. 2023;83:89–102.

    Article  CAS  PubMed  Google Scholar 

  34. Jin H, Shi Y, Lv Y, Yuan S, Ramirez CFA, Lieftink C, et al. EGFR activation limits the response of liver cancer to lenvatinib. Nature. 2021;595:730–4.

    Article  CAS  PubMed  Google Scholar 

  35. Hu F, Song D, Yan Y, Huang C, Shen C, Lan J, et al. IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation. Nat Commun. 2021;12:3651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chow PM, Liu SH, Chang YW, Kuo KL, Lin WC, Huang KH. The covalent CDK7 inhibitor THZ1 enhances temsirolimus-induced cytotoxicity via autophagy suppression in human renal cell carcinoma. Cancer Lett. 2020;471:27–37.

    Article  CAS  PubMed  Google Scholar 

  37. Wirth M, Joachim J, Tooze SA. Autophagosome formation-the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol. 2013;23:301–9.

    Article  CAS  PubMed  Google Scholar 

  38. Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery. Cell. 2019;177:1682–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Corona AK, Jackson WT. Finding the middle ground for autophagic fusion requirements. Trends Cell Biol. 2018;28:869–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin Z, Niu Y, Wan A, Chen D, Liang H, Chen X, et al. RNA m(6) A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. Embo j. 2020;39:e103181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu X, Zhang R, Liu L, Zhi S, Feng X, Shen Y, et al. Sohlh2 promotes the progression of hepatocellular carcinoma via TGM2-Mediated Autophagy. Mol Carcinog. 2024;64:138–51.

  42. Huang X, Gan G, Wang X, Xu T, Xie W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 2019;15:1258–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42.

    Article  CAS  PubMed  Google Scholar 

  44. Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176:11–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020;19:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zheng Y, Huang C, Lu L, Yu K, Zhao J, Chen M, et al. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J Hematol Oncol. 2021;14:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim HI, An J, Kim JY, Shin HP, Park SY, Song GW, et al. Postresection period-specific hazard of recurrence as a framework for surveillance strategy in patients with hepatocellular carcinoma: a multicenter outcome study. Liver Cancer. 2022;11:141–51.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No.82072663) and the China Postdoctoral Science Foundation (No.2024M763772).

Author information

Authors and Affiliations

Authors

Contributions

SQL and GPZ conceived of the study. ZBS, GPZ, and DHC were involved in data acquisition and interpretation. YY and FFW contributed to the statistical analysis. GPZ and ZBS wrote the original manuscript. MK reviewed the manuscript and patient management. SQL supervised the study and reviewed the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Shao-Qiang Li.

Ethics declarations

Competing interests

The authors declared no competing interests.

Ethical approval

All animal experiments were approved by the Institutional Care and Animal Use Committee of the First Affiliated Hospital of Sun Yat-sen University (Approval No [2021]308). We have obtained patients’ consent for publication. All human specimens were approved by the Ethics Committee of the First Affiliated Hospital of Sun Yat-sen University (Approval No [2021]388). All methods were performed in accordance with the relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GP., Song, ZB., Chen, DH. et al. Syntaxin-6 mediated autophagy confers lenvatinib resistance in hepatocellular carcinoma. Oncogene 44, 2025–2039 (2025). https://doi.org/10.1038/s41388-025-03371-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-025-03371-7

Search

Quick links