Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Derlin-3 manipulates the endoplasmic reticulum stress and IgG4 secretion of plasma cells in lung adenocarcinoma

Abstract

Derlin-3 has been implicated as an essential element in the degradation of misfolded lumenal glycoproteins induced by endoplasmic reticulum (ER) stress. However, its potential biomechanisms in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) remains to be elucidated. In the present study, we found that Derlin-3 was predominantly elevated in LUAD tissues, and could predict worse prognosis of LUAD patients. ScRNA-seq analysis indicated that Derlin-3 was mainly enriched in B lymphocytes in the TME, especially in plasma cells. Moreover, Derlin-3 may be involved in ER stress and IgG4 secretion in plasma cells by targeting Hrd1/p38/PRDM1 pathway. While the aberrant IgG4 production may be an essential driver of the polarization of macrophages towards the M2 phenotype. Additionally, downregulation of Derlin-3 could inhibit plasma cells infiltration and M2 macrophage polarization in vivo. Our results indicated that Derlin-3 could shape TME via ER stress to harness immune function, which might serve as a promising immunotherapeutic target in LUAD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of Derlin-3 in LUAD was associated with worse prognosis.
Fig. 2: Summary of the clustering and annotation of single-cell RNA sequencing data for LUAD and adjacent lung tissues.
Fig. 3: Derlin-3 was activated in response to ER stress in plasma cells.
Fig. 4: Derlin-3 mediated IgG4 secretion in plasma cells via Hrd1/p38/PRDM1 axis.
Fig. 5: IgG4 promoted the transformation of macrophages to immunosuppressive M2 phenotype.
Fig. 6: Derlin-3-mediated M2 polarization further affected the proliferation and migration of LUAD cells.
Fig. 7: Knockdown of Derlin-3 suppressed tumorigenesis in vivo.
Fig. 8: The schematic diagram illustrates the proposed mechanism of Derlin-3 in the tumor microenvironment of LUAD.

Similar content being viewed by others

Data availability

The datasets presented in this study are available from the corresponding author upon reasonable request.

References

  1. Adams SJ, Stone E, Baldwin DR, Vliegenthart R, Lee P, Fintelmann FJ. Lung cancer screening. Lancet. 2023;401:390–408.

    Article  PubMed  Google Scholar 

  2. Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol. 2023;20:624–39.

    Article  PubMed  Google Scholar 

  3. Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, et al. Early detection of cancer. Science. 2022;375:eaay9040.

    Article  CAS  PubMed  Google Scholar 

  4. Walsh RJ, Soo RA. Resistance to immune checkpoint inhibitors in non-small cell lung cancer: biomarkers and therapeutic strategies. Ther Adv Med Oncol. 2020;12:1758835920937902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41:374–403.

    Article  PubMed  Google Scholar 

  6. Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221:107753.

    Article  CAS  PubMed  Google Scholar 

  7. Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368:eaaw5473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2015;25:198–213.

    Article  PubMed  Google Scholar 

  9. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17:457–74.

    Article  PubMed  Google Scholar 

  10. Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41.

    Article  CAS  PubMed  Google Scholar 

  11. Krumbholz M, Derfuss T, Hohlfeld R, Meinl E. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol. 2012;8:613–23.

    Article  CAS  PubMed  Google Scholar 

  12. Matsushita T. Regulatory and effector B cells: Friends or foes?. J Dermatol Sci. 2019;93:2–7.

    Article  CAS  PubMed  Google Scholar 

  13. Yuen GJ, Demissie E, Pillai S. B lymphocytes and cancer: a love-hate relationship. Trends Cancer. 2016;2:747–57.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell. 2017;168:692–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salvagno C, Mandula JK, Rodriguez PC, Cubillos-Ruiz JR. Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends Cancer. 2022;8:930–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Csordás G, Weaver D, Hajnóczky G. Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 2018;28:523–40.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther. 2023;8:352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song S, Tan J, Miao Y, Zhang Q. Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery. J Cell Physiol. 2018;233:3867–74.

    Article  CAS  PubMed  Google Scholar 

  19. Wiseman RL, Mesgarzadeh JS, Hendershot LM. Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell. 2022;82:1477–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Urra H, Dufey E, Avril T, Chevet E, Hetz C. Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer. 2016;2:252–62.

    Article  PubMed  Google Scholar 

  21. Oda Y, Okada T, Yoshida H, Kaufman RJ, Nagata K, Mori K. Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J Cell Biol. 2006;172:383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Liu H, Chen H, Shao J, Su F, Zhang S, et al. DERL3 functions as a tumor suppressor in gastric cancer. Comput Biol Chem. 2020;84:107172.

    Article  CAS  PubMed  Google Scholar 

  23. Geng M, Xu K, Meng L, Xu J, Jiang C, Guo Y, et al. Up-regulated DERL3 in fibroblast-like synoviocytes exacerbates inflammation of rheumatoid arthritis. Clin Immunol. 2020;220:108579.

    Article  CAS  PubMed  Google Scholar 

  24. Lin L, Lin G, Lin H, Chen L, Chen X, Lin Q, et al. Integrated profiling of endoplasmic reticulum stress-related DERL3 in the prognostic and immune features of lung adenocarcinoma. Front Immunol. 2022;13:906420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang W, Cui X, Sun D, Sun G, Yan Z, Wei M, et al. POU5F1 promotes the proliferation, migration, and invasion of gastric cancer cells by reducing the ubiquitination level of TRAF6. Cell Death Dis. 2023;14:802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu F, Fan J, He Y, Xiong A, Yu J, Li Y, et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat Commun. 2021;12:2540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mishra M, Jiang H, Chawsheen HA, Gerard M, Toledano MB, Wei Q. Nrf2-activated expression of sulfiredoxin contributes to urethane-induced lung tumorigenesis. Cancer Lett. 2018;432:216–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Z, Liu G, Ha DP, Wang J, Xiong M, Lee AS. ER chaperone GRP78/BiP translocates to the nucleus under stress and acts as a transcriptional regulator. Proc Natl Acad Sci USA. 2023;120:e2303448120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abisambra JF, Jinwal UK, Blair LJ, O’Leary JC 3rd, Li Q, Brady S, et al. Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J Neurosci. 2013;33:9498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hwang J, Qi L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci. 2018;43:593–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun Y, Huang T, Hammarström L, Zhao Y. The Immunoglobulins: New Insights, Implications, and Applications. Annu Rev Anim Biosci. 2020;8:145–69.

    Article  CAS  PubMed  Google Scholar 

  32. Yang L, Wang G, Xia H. Molecular mechanism for impaired suppressive function of Tregs in autoimmune diseases: A summary of cell-intrinsic and cell-extrinsic factors. J Cell Mol Med. 2020;24:11056–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113:3716–25.

    Article  CAS  PubMed  Google Scholar 

  34. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27:1482–92.

    Article  CAS  PubMed  Google Scholar 

  35. Mushtaq MU, Papadas A, Pagenkopf A, Flietner E, Morrow Z, Chaudhary SG, et al. Tumor matrix remodeling and novel immunotherapies: the promise of matrix-derived immune biomarkers. J Immunother Cancer. 2018;6:65.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–68.

    Article  CAS  PubMed  Google Scholar 

  37. Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 2015;10:173–94.

    Article  CAS  PubMed  Google Scholar 

  38. Ozcan L, Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med. 2012;63:317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 2021;21:71–88.

    Article  CAS  PubMed  Google Scholar 

  40. Chen P, Li Y, Zhou Z, Pan C, Zeng L. Lathyrol promotes ER stress-induced apoptosis and proliferation inhibition in lung cancer cells by targeting SERCA2. Biomed Pharmacother. 2023;158:114123.

    Article  CAS  PubMed  Google Scholar 

  41. Rangel DF, Dubeau L, Park R, Chan P, Ha DP, Pulido MA, et al. Endoplasmic reticulum chaperone GRP78/BiP is critical for mutant Kras-driven lung tumorigenesis. Oncogene. 2021;40:3624–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lopez-Serra P, Marcilla M, Villanueva A, Ramos-Fernandez A, Palau A, Leal L, et al. A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect. Nat Commun. 2014;5:3608.

    Article  PubMed  Google Scholar 

  43. Kondo S, Okabe A, Nakagawa T, Matsusaka K, Fukuyo M, Rahmutulla B, et al. Repression of DERL3 via DNA methylation by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Biochim Biophys Acta Mol Basis Dis. 2023;1869:166598.

    Article  CAS  PubMed  Google Scholar 

  44. Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014;120:3446–56.

    Article  CAS  PubMed  Google Scholar 

  45. Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev. 2021;73:263–96.

    Article  CAS  PubMed  Google Scholar 

  46. Shen T, Huang Z, Shi C, Pu X, Xu X, Wu Z, et al. Pancreatic cancer-derived exosomes induce apoptosis of T lymphocytes through the p38 MAPK-mediated endoplasmic reticulum stress. Faseb J. 2020;34:8442–58.

    Article  CAS  PubMed  Google Scholar 

  47. Wu J, Yang K, Cai S, Zhang X, Hu L, Lin F, et al. A p38α-BLIMP1 signalling pathway is essential for plasma cell differentiation. Nat Commun. 2022;13:7321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yu J, Song Y, Tian W. How to select IgG subclasses in developing anti-tumor therapeutic antibodies. J Hematol Oncol. 2020;13:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Karagiannis P, Gilbert AE, Nestle FO, Karagiannis SN. IgG4 antibodies and cancer-associated inflammation: Insights into a novel mechanism of immune escape. Oncoimmunology. 2013;2:e24889.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jordakieva G, Bianchini R, Reichhold D, Piehslinger J, Groschopf A, Jensen SA, et al. IgG4 induces tolerogenic M2-like macrophages and correlates with disease progression in colon cancer. Oncoimmunology. 2021;10:1880687.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Karagiannis P, Gilbert AE, Josephs DH, Ali N, Dodev T, Saul L, et al. IgG4 subclass antibodies impair antitumor immunity in melanoma. J Clin Invest. 2013;123:1457–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bianchini R, Roth-Walter F, Ohradanova-Repic A, Flicker S, Hufnagl K, Fischer MB, et al. IgG4 drives M2a macrophages to a regulatory M2b-like phenotype: potential implication in immune tolerance. Allergy. 2019;74:483–94.

    Article  CAS  PubMed  Google Scholar 

  54. Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol. 2022;23:1148–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang R, Liu Q, Peng J, Wang M, Gao X, Liao Q, et al. Pancreatic cancer-educated macrophages protect cancer cells from complement-dependent cytotoxicity by up-regulation of CD59. Cell Death Dis. 2019;10:836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bianchini R, Karagiannis SN, Jordakieva G, Jensen-Jarolim E. The Role of IgG4 in the fine tuning of tolerance in IgE-mediated allergy and cancer. Int J Mol Sci. 2020;21:5017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Startup Fund for scientific research, Fujian Medical University (Grant number: 2021QH2044), High-level Talent Funding Project of Quanzhou, China (Grant number: 2020C001R), Quanzhou High-level Talent Introduction Program (Grant number: 2023CT014), and Fujian Province Science and Technology Innovation Joint Fund Project (Grant number: 2024Y9397).

Author information

Authors and Affiliations

Authors

Contributions

Y.X and Y.Z conceived and supervised the project. G.L and L.L performed the experiments, analyzed the data and wrote the manuscript, L.C assisted in part of the manuscript writing. X.C and F.H assisted with the computational analysis. D.Q was responsible for the analysis of single-cell transcriptomic data. J.Y and R.L collected surgical specimens and clinical records. S.C and D.Y conducted molecular pathological experiments and interpreted the results. L.H contributed to the peer review content modifications. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yiming Zeng or Yuan Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the Second Affiliated Hospital of Fujian Medical University (approval No. 2022-89) following the principles of the Declaration of Helsinki, and written informed consents were obtained from all patients. Animal experiment was approved by the Institutional Animal Ethics Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Chen, L., Lin, G. et al. Derlin-3 manipulates the endoplasmic reticulum stress and IgG4 secretion of plasma cells in lung adenocarcinoma. Oncogene (2025). https://doi.org/10.1038/s41388-025-03435-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-025-03435-8

Search

Quick links