Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

m6A modification-dependent upregulation of WNT2 facilitates M2-like macrophage polarization and perpetuates malignant progression of nasopharyngeal carcinoma

Abstract

The development and progression of nasopharyngeal carcinoma (NPC) involves intricate interactions between tumor cells and other surrounding cells in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play pivotal roles in the progression of NPC, but their interactions remain largely unexplored. In this study, we revealed that NPC promoted M2-like polarization of TAMs through enhanced synthesis and secretion of WNT2. These M2-type macrophages, in turn, significantly boosted the proliferation and metastasis of NPC. This vicious cycle perpetuated the malignant progression of NPC. Mechanistically, elevated m6A modification of WNT2 in NPC stabilized its mRNA and facilitated its protein expression, which is coordinately regulated by the m6A “eraser” ALKBH5 and the “reader” YTHDF1. NPC promoted M2-like polarization of macrophages by activating the FZD2/β-catenin signaling axis through paracrine WNT2. Furthermore, elevated WNT2 can also trigger the WNT/β-catenin signaling pathway in NPC cells through autocrine signaling, synergically contributing to NPC development. The research reveals that WNT2 is upregulated in an m6A modification-dependent manner and promotes M2-like macrophages polarization of TAMs and malignant progression of NPC. This discovery provides novel potential molecular markers and therapeutic targets for the diagnosis and treatment of NPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: WNT2 is highly expressed in NPC and closely associated with poor prognosis of NPC patients.
Fig. 2: WNT2 promotes M2-like macrophage polarization through activating the FZD2/β-catenin signaling pathway in macrophages.
Fig. 3: M2-like macrophages promote the proliferation and metastasis of NPC.
Fig. 4: Autocrine WNT2 promotes proliferation, migration, and invasion of NPC cells.
Fig. 5: m6A modification augments the expression and secretion of WNT2 and is negatively regulated by ALKBH5.
Fig. 6: YTHDF1 and ALKBH5 coordinately modulate WNT2 mRNA stability in an m6A-dependent manner.
Fig. 7: The expression of WNT2 in NPC tissue is positively correlated with M2-like macrophage polarization and negatively correlated with ALKBH5 expression.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394:64–80.

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  3. Tsao SW, Yip YL, Tsang CM, Pang PS, Lau VM, Zhang G et al. Etiological factors of nasopharyngeal carcinoma. Oral Oncol. 2014;50:330–8.

    Article  PubMed  Google Scholar 

  4. Bei JX, Li Y, Jia WH, Feng BJ, Zhou G, Chen LZ et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet. 2010;42:599–603.

    Article  CAS  PubMed  Google Scholar 

  5. Xiong W, Zeng ZY, Xia JH, Xia K, Shen SR, Li XL et al. A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res. 2004;64:1972–4.

    Article  CAS  PubMed  Google Scholar 

  6. Chang ET, Liu Z, Hildesheim A, Liu Q, Cai Y, Zhang Z et al. Active and passive smoking and risk of nasopharyngeal carcinoma: a population-based case-control study in Southern China. Am J Epidemiol. 2017;185:1272–80.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen Y, Chang ET, Liu Q, Cai Y, Zhang Z, Chen G et al. Environmental factors for Epstein-Barr virus reactivation in a high-risk area of nasopharyngeal carcinoma: a population-based study. Open Forum Infect Dis. 2022;9:ofac128.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen YP, Zhao BC, Chen C, Lei XX, Shen LJ, Chen G et al. Alcohol drinking as an unfavorable prognostic factor for male patients with nasopharyngeal carcinoma. Sci Rep. 2016;6:19290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Y, Chang ET, Liu Q, Cai Y, Zhang Z, Chen G et al. Occupational exposures and risk of nasopharyngeal carcinoma in a high-risk area: a population-based case-control study. Cancer. 2021;127:2724–35.

    Article  CAS  PubMed  Google Scholar 

  10. Liu Z, Chang ET, Liu Q, Cai Y, Zhang Z, Chen G et al. Oral hygiene and risk of nasopharyngeal carcinoma-a population-based case-control study in China. Cancer Epidemiol Biomark Prev. 2016;25:1201–7.

    Article  CAS  Google Scholar 

  11. Yang L, Liu G, Li Y, Pan Y. The emergence of tumor-infiltrating lymphocytes in nasopharyngeal carcinoma: Predictive value and immunotherapy implications. Genes Dis. 2022;9:1208–19.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang YL, Li J, Mo HY, Qiu F, Zheng LM, Qian CN et al. Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways. Mol Cancer. 2010;9:4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 2019;18:64.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lu J, Li J, Lin Z, Li H, Lou L, Ding W et al. Reprogramming of TAMs via the STAT3/CD47-SIRPα axis promotes acquired resistance to EGFR-TKIs in lung cancer. Cancer Lett. 2023;564:216205.

    Article  CAS  PubMed  Google Scholar 

  15. Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17:887–904.

    Article  CAS  PubMed  Google Scholar 

  16. Yang Y, Ye YC, Chen Y, Zhao JL, Gao CC, Han H et al. Crosstalk between hepatic tumor cells and macrophages via Wnt/β-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death Dis. 2018;9:793.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tian X, Wu Y, Yang Y, Wang J, Niu M, Gao S et al. Long noncoding RNA LINC00662 promotes M2 macrophage polarization and hepatocellular carcinoma progression via activating Wnt/β-catenin signaling. Mol Oncol. 2020;14:462–83.

    Article  CAS  PubMed  Google Scholar 

  18. Yang C, Dou R, Wei C, Liu K, Shi D, Zhang C et al. Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis. Mol Ther. 2021;29:2088–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci. 2019;26:78.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liao Q, Zeng Z, Guo X, Li X, Wei F, Zhang W et al. LPLUNC1 suppresses IL-6-induced nasopharyngeal carcinoma cell proliferation via inhibiting the Stat3 activation. Oncogene. 2014;33:2098–109.

    Article  CAS  PubMed  Google Scholar 

  22. Yap LF, Ahmad M, Zabidi MM, Chu TL, Chai SJ, Lee HM et al. Oncogenic effects of WNT5A in Epstein-Barr virus‑associated nasopharyngeal carcinoma. Int J Oncol. 2014;44:1774–80.

    Article  CAS  PubMed  Google Scholar 

  23. Lu Z, Zhou Y, Jing Q. Wnt5a-mediated autophagy promotes radiation resistance of nasopharyngeal carcinoma. J Cancer. 2022;13:2388–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31–42.

    Article  CAS  PubMed  Google Scholar 

  25. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20:608–24.

    Article  CAS  PubMed  Google Scholar 

  26. Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer. 2022;21:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jing FY, Zhou LM, Ning YJ, Wang XJ, Zhu YM. The biological function, mechanism, and clinical significance of m6a rna modifications in head and neck carcinoma: a systematic review. Front Cell Dev Biol. 2021;9:683254.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li ZX, Zheng ZQ, Yang PY, Lin L, Zhou GQ, Lv JW et al. WTAP-mediated m(6)A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis. Cell Death Differ. 2022;29:1137–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao Y, Huang S, Tan X, Long L, He Q, Liang X et al. N(6) -methyladenosine-modified CBX1 regulates nasopharyngeal carcinoma progression through heterochromatin formation and STAT1 activation. Adv Sci. 2022;9:e2205091.

    Article  Google Scholar 

  30. An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 2022;21:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guan Q, Lin H, Miao L, Guo H, Chen Y, Zhuo Z et al. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J Hematol Oncol. 2022;15:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gong L, Luo J, Zhang Y, Yang Y, Li S, Fang X et al. Nasopharyngeal carcinoma cells promote regulatory T cell development and suppressive activity via CD70-CD27 interaction. Nat Commun. 2023;14:1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wellenstein MD, Coffelt SB, Duits DEM, van Miltenburg MH, Slagter M, de Rink I et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature. 2019;572:538–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S et al. Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci USA. 2006;103:5454–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma Z, Li X, Mao Y, Wei C, Huang Z, Li G et al. Interferon-dependent SLC14A1(+) cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell. 2022;40:1550–1565.e7.

    Article  CAS  PubMed  Google Scholar 

  36. Gong L, Kwong DL, Dai W, Wu P, Li S, Yan Q et al. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma. Nat Commun. 2021;12:1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu HH, Zhu XY, Zhou MH, Cheng GY, Lou WH. Effect of WNT5A on epithelial-mesenchymal transition and its correlation with tumor invasion and metastasis in nasopharyngeal carcinoma. Asian Pac J Trop Med. 2014;7:488–91.

    Article  CAS  PubMed  Google Scholar 

  38. Gao J, Liang Y, Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 2022;13:888713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meng Z, Zhang R, Wang Y, Zhu G, Jin T, Li C et al. miR-200c/PAI-2 promotes the progression of triple negative breast cancer via M1/M2 polarization induction of macrophage. Int Immunopharmacol. 2020;81:106028.

    Article  CAS  PubMed  Google Scholar 

  40. Zarif JC, Baena-Del Valle JA, Hicks JL, Heaphy CM, Vidal I, Luo J et al. Mannose receptor-positive macrophage infiltration correlates with prostate cancer onset and metastatic castration-resistant disease. Eur Urol Oncol. 2019;2:429–36.

    Article  PubMed  Google Scholar 

  41. Xu Y, Liao C, Liu R, Liu J, Chen Z, Zhao H et al. IRGM promotes glioma M2 macrophage polarization through p62/TRAF6/NF-κB pathway mediated IL-8 production. Cell Biol Int. 2019;43:125–35.

    Article  CAS  PubMed  Google Scholar 

  42. Hu H, Tu W, Chen Y, Zhu M, Jin H, Huang T et al. The combination of PKM2 overexpression and M2 macrophages infiltration confers a poor prognosis for PDAC patients. J Cancer. 2020;11:2022–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fu Y, Zheng Q, Mao Y, Jiang X, Chen X, Liu P et al. WNT2-mediated FZD2 stabilization regulates esophageal cancer metastasis via STAT3 signaling. Front Oncol. 2020;10:1168.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang HX, Tekpetey FR, Kidder GM. Identification of WNT/beta-CATENIN signaling pathway components in human cumulus cells. Mol Hum Reprod. 2009;15:11–7.

    Article  PubMed  Google Scholar 

  45. Klein D, Demory A, Peyre F, Kroll J, Augustin HG, Helfrich W et al. Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway. Hepatology. 2008;47:1018–31.

    Article  CAS  PubMed  Google Scholar 

  46. Yin C, Ye Z, Wu J, Huang C, Pan L, Ding H et al. Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction. EBioMedicine. 2021;74:103745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaffe E, Roulis M, Zhao J, Qu R, Sefik E, Mirza H et al. Humanized mouse liver reveals endothelial control of essential hepatic metabolic functions. Cell. 2023;186:3793–3809.e26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mazzotta S, Neves C, Bonner RJ, Bernardo AS, Docherty K, Hoppler S. Distinctive roles of canonical and noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development. Stem Cell Rep. 2016;7:764–76.

    Article  CAS  Google Scholar 

  49. Tan XY, Li YT, Li HH, Ma LX, Zeng CM, Zhang TT et al. WNT2-SOX4 positive feedback loop promotes chemoresistance and tumorigenesis by inducing stem-cell like properties in gastric cancer. Oncogene. 2023;42:3062–74.

    Article  CAS  PubMed  Google Scholar 

  50. Hsu TN, Huang CM, Huang CS, Huang MS, Yeh CT, Chao TY et al. Targeting FAT1 inhibits carcinogenesis, induces oxidative stress and enhances cisplatin sensitivity through deregulation of LRP5/WNT2/GSS signaling axis in oral squamous cell carcinoma. Cancers. 2019;11:1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feng Y, Ren J, Gui Y, Wei W, Shu B, Lu Q et al. Wnt/β-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. J Am Soc Nephrol. 2018;29:182–93.

    Article  CAS  PubMed  Google Scholar 

  52. Zhao SJ, Kong FQ, Jie J, Li Q, Liu H, Xu AD et al. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway. Theranostics. 2020;10:17–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Henderson WR Jr, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B et al. Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci USA. 2010;107:14309–14.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ackers I, Malgor R. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diab Vasc Dis Res. 2018;15:3–13.

    Article  CAS  PubMed  Google Scholar 

  55. Gajos-Michniewicz A, Czyz M. WNT signaling in melanoma. Int J Mol Sci. 2020;21:4852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang YM, Peng ZY, Zhang LY, Wang YX, Fan RH, Zhang H et al. N6-Methyladenosine RNA modification landscape in the occurrence and recurrence of nasopharyngeal carcinoma. World J Oncol. 2022;13:205–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article  PubMed  Google Scholar 

  58. Yang S, Liu Y, Li MY, Ng CSH, Yang SL, Wang S et al. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol Cancer. 2017;16:124.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D et al. β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 2019;9:1124–41.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang G, Gao Z, Guo X, Ma R, Wang X, Zhou P et al. CAP2 promotes gastric cancer metastasis by mediating the interaction between tumor cells and tumor-associated macrophages. J Clin Invest. 2023;133:e166224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yao Y, Chen C, Wang J, Xuan H, Chen X, Li Z et al. Circular RNA circATP9A promotes non-small cell lung cancer progression by interacting with HuR and by promoting extracellular vesicles-mediated macrophage M2 polarization. J Exp Clin Cancer Res. 2023;42:330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu Y, Ke L, Lv X, Ling YH, Lu J, Liang H et al. The prognostic significance of carcinoma-associated fibroblasts and tumor-associated macrophages in nasopharyngeal carcinoma. Cancer Manag Res. 2018;10:1935–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang B, Miao T, Shen X, Bao L, Zhang C, Yan C et al. EB virus-induced ATR activation accelerates nasopharyngeal carcinoma growth via M2-type macrophages polarization. Cell Death Dis. 2020;11:742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fang Y, Shen ZY, Zhan YZ, Feng XC, Chen KL, Li YS et al. CD36 inhibits β-catenin/c-myc-mediated glycolysis through ubiquitination of GPC4 to repress colorectal tumorigenesis. Nat Commun. 2019;10:3981.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fu L, Zhang C, Zhang LY, Dong SS, Lu LH, Chen J et al. Wnt2 secreted by tumour fibroblasts promotes tumour progression in oesophageal cancer by activation of the Wnt/β-catenin signalling pathway. Gut. 2011;60:1635–43.

    Article  CAS  PubMed  Google Scholar 

  66. Huang TX, Tan XY, Huang HS, Li YT, Liu BL, Liu KS et al. Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut. 2022;71:333–44.

    Article  CAS  PubMed  Google Scholar 

  67. Wang Z, Li B, Li S, Lin W, Wang Z, Wang S et al. Metabolic control of CD47 expression through LAT2-mediated amino acid uptake promotes tumor immune evasion. Nat Commun. 2022;13:6308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang H, Li R, Cao Y, Gu Y, Lin C, Liu X et al. Poor clinical outcomes and immunoevasive contexture in intratumoral IL-10-producing macrophages enriched gastric cancer patients. Ann Surg. 2022;275:e626–e635.

    Article  PubMed  Google Scholar 

  69. Tang Q, Li L, Wang Y, Wu P, Hou X, Ouyang J et al. RNA modifications in cancer. Br J Cancer. 2023;129:204–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28:616–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tan F, Zhao M, Xiong F, Wang Y, Zhang S, Gong Z et al. N6-methyladenosine-dependent signalling in cancer progression and insights into cancer therapies. J Exp Clin Cancer Res. 2021;40:146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang H, Weng H, Chen J. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020;37:270–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the BioRender (www.biorender.com), as Fig. S2C, 3A and 7E in this article was created with BioRender platform. This study was funded by the National Natural Science Foundation of China (U21A20382), the Natural Science Foundation of Hunan Province (2024JJ3035), and the Natural Science Foundation of Changsha (kh2301025), and the Fundamental Research Funds for the Central Universities of Central South University (2024ZZTS0529).

Author information

Authors and Affiliations

Contributions

QLT designed the project and completed most experiments., LYL, JSG, DW, HKQ performed some of the experiments. JW, QW, ZYP, YZM collected tissue samples. QLT analyzed the data and wrote the manuscript. YMW, CMF, QJY, PC, HH, WJG, LS, ZYZ, and WX revised the manuscript. LS, PC, and WX are responsible for research supervision and funding acquisition. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lei Shi, Zhaoyang Zeng or Wei Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal studies were approved by the Laboratory Animal Ethics Committee of Central South University (Approval No: CSU-2022-0569). All animal experiments strictly adhered to the ethical guidelines and regulations of the committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Li, L., Ge, J. et al. m6A modification-dependent upregulation of WNT2 facilitates M2-like macrophage polarization and perpetuates malignant progression of nasopharyngeal carcinoma. Oncogene (2025). https://doi.org/10.1038/s41388-025-03452-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-025-03452-7

Search

Quick links