Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BRD4 regulates PAI-1 expression in tumor-associated macrophages to drive chemoresistance in colorectal cancer

Abstract

Tumor-associated macrophages (TAMs) in the tumor microenvironment play a key role in drug resistance, but the mechanisms underlying TAM polarization and its role in drug resistance remain unclear. Here, we identified BRD4 as a critical factor in TAM polarization and drug resistance in colorectal cancer (CRC). BRD4 deficiency in macrophages impaired M2-like TAM polarization, and tumors from myeloid-lineage specific Brd4 conditional knockout (Brd4-CKO) mice displayed a reduction in infiltrating M2-like TAMs and an enhanced anti-tumor microenvironment. Colon cancer cells treated with conditioned medium from polarized Brd4-deficient TAMs, as well as tumors in Brd4-CKO mice, were more sensitive to oxaliplatin. RNA-seq and cytokine microarray analysis revealed that mRNA and protein levels of PAI-1 were significantly decreased in Brd4-deficient polarized TAMs. BRD4 was recruited to the promoter of Serpine1, promoting SMAD-dependent PAI-1 expression. Supplementing Brd4-deficient TAMs with recombinant PAI-1 hampered the sensitivity of colon cancer cells to oxaliplatin. Moreover, PAI-1 inhibitor and oxaliplatin synergistically suppressed the growth of colon tumors. Clinically, the expression levels of BRD4 in TAMs and PAI-1 in tumors were elevated in CRC patients with chemoresistance, correlating with shorter recurrence-free survival. Collectively, our findings uncover a novel role for BRD4 in TAM polarization and drug resistance via PAI-1 upregulation, suggesting the BRD4/PAI-1 axis as a potential prognostic marker and therapeutic target in CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BRD4 regulates the polarization of TAMs and the immunosuppressive TME.
Fig. 2: Myeloid BRD4 deficiency enhances sensitivity of MC38 cells to oxaliplatin in vivo and in vitro.
Fig. 3: Deletion of BRD4 alters the transcriptional landscape in TAMs.
Fig. 4: BRD4 cooperates with SMAD3 to regulate PAI-1 expression in M2-like TAMs.
Fig. 5: BRD4-regulated PAI-1 in TAMs confer MC38 cell resistance to oxaliplatin.
Fig. 6: BRD4 levels in TAMs correlate with PAI-1 expression in tumor tissues of chemoresistant CRC patients.

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon request.

References

  1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.

    Article  PubMed  Google Scholar 

  2. Johnson D, Chee CE, Wong W, Lam RCT, Tan IBH, Ma BBY. Current advances in targeted therapy for metastatic colorectal cancer - Clinical translation and future directions. Cancer Treat Rev. 2024;125:102700.

    Article  CAS  PubMed  Google Scholar 

  3. Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, Nagarajan A, et al. Immune checkpoint therapy-current perspectives and future directions. Cell. 2023;186:1652–69.

    Article  CAS  PubMed  Google Scholar 

  4. Smith SM, Wachter K, Burris HA 3rd, Schilsky RL, George DJ, Peterson DE, et al. Clinical cancer advances 2021: ASCO’s report on progress against cancer. J Clin Oncol. 2021;39:1165–84.

    Article  PubMed  Google Scholar 

  5. Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, et al. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnol. 2022;20:371.

    Article  CAS  Google Scholar 

  6. Bayik D, Lathia JD. Cancer stem cell-immune cell crosstalk in tumour progression. Nat Rev Cancer. 2021;21:526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30:R921–R5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol. 2022;23:1148–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bleriot C, Dunsmore G, Alonso-Curbelo D, Ginhoux F. A temporal perspective for tumor-associated macrophage identities and functions. Cancer cell. 2024;42:747–58.

    Article  CAS  PubMed  Google Scholar 

  10. Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in cancer. Trends Immunol. 2019;40:310–27.

    Article  CAS  PubMed  Google Scholar 

  11. Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022;21:799–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang S, Wang J, Chen Z, Luo J, Guo W, Sun L, et al. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis Oncol. 2024;8:31.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ha H, Oh EY, Lee HB. The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases. Nat Rev Nephrol. 2009;5:203–11.

    Article  CAS  PubMed  Google Scholar 

  14. Placencio VR, DeClerck YA. Plasminogen activator inhibitor-1 in cancer: rationale and insight for future therapeutic testing. Cancer Res. 2015;75:2969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rossi Sebastiano M, Pozzato C, Saliakoura M, Yang Z, Peng RW, Galie M, et al. ACSL3-PAI-1 signaling axis mediates tumor-stroma cross-talk promoting pancreatic cancer progression. Science advances. 2020;6:eabb9200.

  16. Wang B, Gu B, Zhang T, Li X, Wang N, Ma C, et al. Good or bad: Paradox of plasminogen activator inhibitor 1 (PAI-1) in digestive system tumors. Cancer Lett. 2023;559:216117.

    Article  CAS  PubMed  Google Scholar 

  17. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998;17:3091–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Datta PK, Blake MC, Moses HL. Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-beta -induced physical and functional interactions between smads and Sp1. J Biol Chem. 2000;275:40014–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kubala MH, Punj V, Placencio-Hickok VR, Fang H, Fernandez GE, Sposto R, et al. Plasminogen activator inhibitor-1 promotes the recruitment and polarization of macrophages in cancer. Cell Rep. 2018;25:2177–91.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Che Y, Wang J, Li Y, Lu Z, Huang J, Sun S, et al. Cisplatin-activated PAI-1 secretion in the cancer-associated fibroblasts with paracrine effects promoting esophageal squamous cell carcinoma progression and causing chemoresistance. Cell Death Dis. 2018;9:759.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu SY, Chiang CM. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem. 2007;282:13141–5.

    Article  CAS  PubMed  Google Scholar 

  22. Bao Y, Wu X, Chen J, Hu X, Zeng F, Cheng J, et al. Brd4 modulates the innate immune response through Mnk2-eIF4E pathway-dependent translational control of IkappaBalpha. Proc Natl Acad Sci USA. 2017;114:E3993–E4001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dong X, Hu X, Bao Y, Li G, Yang XD, Slauch JM, et al. Brd4 regulates NLRC4 inflammasome activation by facilitating IRF8-mediated transcription of Naips. J Cell Biol. 2021;220:e202005148.

  24. Modi N, Chen Y, Dong X, Hu X, Lau GW, Wilson KT, et al. BRD4 regulates glycolysis-dependent Nos2 expression in macrophages upon H pylori infection. Cell Mol Gastroenterol Hepatol. 2024;17:292–308.e1.

    Article  CAS  PubMed  Google Scholar 

  25. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014;513:559–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fang X, Wu Y, Qin H, Zhao P, Shan M, Wang F, et al. Protocol for building an in vitro model of M2-like tumor-associated macrophages with lactic acid or conditioned medium from Lewis cells. STAR Protoc. 2024;5:103120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xiang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Sig Transduct Target Ther. 2021;6:75.

    Article  Google Scholar 

  28. Cassetta L, Pollard JW. A timeline of tumour-associated macrophage biology. Nat Rev Cancer. 2023;23:238–57.

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Zhang Q, Xing B, Luo N, Gao R, Yu K, et al. Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer cell. 2022;40:424–37.e5.

    Article  PubMed  Google Scholar 

  30. de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer cell. 2023;41:374–403.

    Article  PubMed  Google Scholar 

  31. Tie Y, Tang F, Wei YQ, Wei XW. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol. 2022;15:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575:299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Sig Transduct Target Ther. 2020;5:22.

    Article  CAS  Google Scholar 

  34. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4:307–20.

    Article  CAS  PubMed  Google Scholar 

  35. Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol cell. 1998;1:611–7.

    Article  CAS  PubMed  Google Scholar 

  36. Jinnin M, Ihn H, Tamaki K. Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-beta1-induced extracellular matrix expression. Mol Pharm. 2006;69:597–607.

    Article  CAS  Google Scholar 

  37. Wrighton KH, Lin X, Feng XH. Phospho-control of TGF-beta superfamily signaling. Cell Res. 2009;19:8–20.

    Article  CAS  PubMed  Google Scholar 

  38. Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 2010;11:23–36.

    Article  CAS  PubMed  Google Scholar 

  39. Balsara RD, Ploplis VA. Plasminogen activator inhibitor-1: the double-edged sword in apoptosis. Thrombosis Haemost. 2008;100:1029–36.

    Article  CAS  Google Scholar 

  40. Gorlatova NV, Cale JM, Elokdah H, Li D, Fan K, Warnock M, et al. Mechanism of inactivation of plasminogen activator inhibitor-1 by a small molecule inhibitor. J Biol Chem. 2007;282:9288–96.

    Article  CAS  PubMed  Google Scholar 

  41. Pelka K, Hofree M, Chen JH, Sarkizova S, Pirl JD, Jorgji V, et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell. 2021;184:4734–52.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol. 2021;18:579–87.

    Article  CAS  PubMed  Google Scholar 

  43. Lavin Y, Mortha A, Rahman A, Merad M. Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol. 2015;15:731–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park MD, Silvin A, Ginhoux F, Merad M. Macrophages in health and disease. Cell. 2022;185:4259–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu J, Li G, He X, Gao X, Pan D, Dong X, et al. Brd4 modulates metabolic endotoxemia-induced inflammation by regulating colonic macrophage infiltration in high-fat diet-fed mice. Commun Biol. 2024;7:1708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPalpha immune checkpoint. Immunity. 2020;52:742–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zorio E, Gilabert-Estelles J, Espana F, Ramon LA, Cosin R, Estelles A. Fibrinolysis: the key to new pathogenetic mechanisms. Curr Med Chem. 2008;15:923–9.

    Article  CAS  PubMed  Google Scholar 

  49. Bai X, Duan T, Shao J, Zhang Y, Xing G, Wang J, et al. CBX3 promotes multidrug resistance by suppressing ferroptosis in colorectal carcinoma via the CUL3/NRF2/GPX2 axis. Oncogene. 2025. https://doi.org/10.1038/s41388-025-03337-9.

  50. Kalli M, Mpekris F, Charalambous A, Michael C, Stylianou C, Voutouri C, et al. Mechanical forces inducing oxaliplatin resistance in pancreatic cancer can be targeted by autophagy inhibition. Commun Biol. 2024;7:1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007;8:970–82.

    Article  CAS  PubMed  Google Scholar 

  52. Eren M, Painter CA, Gleaves LA, Schoenhard JA, Atkinson JB, Brown NJ, et al. Tissue- and agonist-specific regulation of human and murine plasminogen activator inhibitor-1 promoters in transgenic mice. J Thromb Haemost. 2003;1:2389–96.

    Article  CAS  PubMed  Google Scholar 

  53. Ross S, Cheung E, Petrakis TG, Howell M, Kraus WL, Hill CS. Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription. EMBO J. 2006;25:4490–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Inoue Y, Itoh Y, Abe K, Okamoto T, Daitoku H, Fukamizu A, et al. Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene. 2007;26:500–8.

    Article  CAS  PubMed  Google Scholar 

  55. Hu J, Pan D, Li G, Chen K, Hu X. Regulation of programmed cell death by Brd4. Cell Death Dis. 2022;13:1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chung JY, Tang PC, Chan MK, Xue VW, Huang XR, Ng CS, et al. Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma. Nature Commun. 2023;14:1794.

    Article  CAS  Google Scholar 

  57. Lei Z, Tang R, Wu Y, Mao C, Xue W, Shen J, et al. TGF-beta1 induces PD-1 expression in macrophages through SMAD3/STAT3 cooperative signaling in chronic inflammation. JCI insight. 2024;9:e165544.

  58. Derynck R, Turley SJ, Akhurst RJ. TGFbeta biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021;18:9–34.

    Article  PubMed  Google Scholar 

  59. Donati B, Lorenzini E, Ciarrocchi A. BRD4 and Cancer: going beyond transcriptional regulation. Mol cancer. 2018;17:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jung M, Gelato KA, Fernandez-Montalvan A, Siegel S, Haendler B. Targeting BET bromodomains for cancer treatment. Epigenomics. 2015;7:487–501.

    Article  CAS  PubMed  Google Scholar 

  61. Yin M, Guo Y, Hu R, Cai WL, Li Y, Pei S, et al. Potent BRD4 inhibitor suppresses cancer cell-macrophage interaction. Nat Commun. 2020;11:1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang H, Tang Y, Fang Y, Zhang M, Wang H, He Z, et al. Reprogramming tumor immune microenvironment (TIME) and metabolism via biomimetic targeting codelivery of shikonin/JQ1. Nano Lett. 2019;19:2935–44.

    Article  PubMed  Google Scholar 

  63. Bejarano L, Jordao MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021;11:933–59.

    Article  CAS  PubMed  Google Scholar 

  64. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14:399–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Cailing Yan from the Public Technology Service Center at Fujian Medical University for assistance with the IVIS® Spectrum In Vivo Imaging System analysis. This work was supported by the National Natural Science Foundation of China (81902842 to XMH and 81801974 to JFH), the Natural Science Foundation of Fujian Province (2022J01210 to DP, 2020J01615 to JFH and 2021J01669 to XMH), the Joint Funds for Innovation in Science and Technology, Fujian Province (2023Y9001 to XMH and 2020Y9006 to JFH), the Young and Middle-Aged Key Personnel Training Project of the Fujian Provincial Health Commission (2021GGA029 to DP); and the UIUC Research Board (RB24044) and CCIL Seed Grant to LFC.

Author information

Authors and Affiliations

Authors

Contributions

XMH and LFC designed the experiment; DP, JFH, GL, XMG, JW, LSJ, HL, YLC, YRZ and YHC performed the experiments; XMH, DP, JFH, GL, JW, XMG, LSJ, HL, YLC, YHC, YRZ, JJL, MZ, HC, and LFC analyzed the data; XMH, LFC and HC supervised the research; DP, XMH and LFC wrote the manuscript.

Corresponding authors

Correspondence to Hui Chen, Lin-Feng Chen or Xiangming Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All human tissue investigations in this study were conducted in accordance with protocols approved by the Ethics Committee of the First Affiliated Hospital of Fujian Medical University (MRCTA, ECFAH of FMU 2021-423). Informed consent was obtained from all patients prior to the use of tumor tissues and clinical data. All animal experiments were approved by the Institutional Animal Care and Use Committee of Fujian Medical University (IACUC FJMU 2023-Y-0652).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, D., Hu, J., Li, G. et al. BRD4 regulates PAI-1 expression in tumor-associated macrophages to drive chemoresistance in colorectal cancer. Oncogene (2025). https://doi.org/10.1038/s41388-025-03453-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-025-03453-6

Search

Quick links