Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LOXL2 reduces susceptibility to PARP inhibitors by promoting super-enhancer-regulated DNA damage repair in high-grade serous ovarian cancer

Abstract

Poly(ADP-ribose) polymerase inhibitors (PARPi) have revolutionized the treatment of homologous recombination-deficient (HRD) tumors, yet their efficacy in homologous recombination-proficient (HRP) tumors is still limited. Here, we pinpoint lysyl oxidase-like 2 (LOXL2) as a key epigenetic regulator driving PARPi resistance. Our study demonstrate that elevated LOXL2 expression correlates with poor prognosis and disease recurrence in high-grade serous ovarian cancer (HGSOC) patients. Functional studies reveal that LOXL2 depletion or pharmacological inhibition synergizes with PARPi to suppress HRP models of both ovarian and breast cancer. Mechanistically, LOXL2 directly interacts with and transcriptionally activates BRD4, a core component of the super-enhancer complex, thereby amplifying the expression of DNA damage repair (DDR) genes such as MDC1, KAT5, and USP7. Strikingly, LOXL2 inhibition induces a “BRCAness” phenotype in HRP tumors, rendering them more susceptible to PARPi by impairing DDR capacity. Combining BET inhibitors with PARPi abrogates LOXL2-mediated resistance, underscoring BRD4 dependency in this process. Our findings establish LOXL2 as a druggable epigenetic target to overcome PARPi resistance in HRP models of multiple tumor types, presenting a therapeutic strategy independent of HR status and holding significant clinical potential for expanding PARPi benefits to a broader patient population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LOXL2 is an epigenetic regulator associated with poor prognosis in ovarian cancer.
Fig. 2: LOXL2 reduces PARP inhibitor (PARPi) susceptibility in high-grade serous ovarian cancer (HGSOC) in vitro.
Fig. 3: LOXL2 reduces PARP inhibitor (PARPi) susceptibility in high-grade serous ovarian cancer (HGSOC) in vivo.
Fig. 4: LOXL2 enhances DNA damage repair in high-grade serous ovarian cancer (HGSOC).
Fig. 5: LOXL2 modulates super-enhancer complex gene expression and function in HGSOC.
Fig. 6: LOXL2 regulates DNA damage repair in a BRD4-dependent manner in HGSOC.
Fig. 7: LOXL2 regulates PARPi sensitivity depending on BRD4 in HGSOC.

Similar content being viewed by others

Data availability

The TCGA and GTEx datasets analyzed during the current study are available in the UCSC Xena repository (https://xena.ucsc.edu/). The original Data from the ovarian cancer cell lines associated with RNA-seq (HRA008609) and ChIP-seq (HRA008587) performed in this study are available at the National Genomics Data Center (https://ngdc.cncb.ac.cn/). The other datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J Clin. 2019;69:280–304.

    Article  PubMed  Google Scholar 

  3. Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet. 2019;393:1240–53.

    Article  PubMed  Google Scholar 

  4. Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2018;379:2495–505.

    Article  CAS  PubMed  Google Scholar 

  5. Ray-Coquard I, Pautier P, Pignata S, Perol D, Gonzalez-Martin A, Berger R, et al. Olaparib plus Bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381:2416–28.

    Article  CAS  PubMed  Google Scholar 

  6. González-Martín A, Pothuri B, Vergote I, DePont Christensen R, Graybill W, Mirza MR, et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N Engl J Med. 2019;381:2391–402.

    Article  PubMed  Google Scholar 

  7. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.

    Article  Google Scholar 

  8. Li H, Liu ZY, Wu N, Chen YC, Cheng Q, Wang J. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer. 2020;19:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.

    Article  CAS  PubMed  Google Scholar 

  10. Guo L, Lee YT, Zhou Y, Huang Y. Targeting epigenetic regulatory machinery to overcome cancer therapy resistance. Semin Cancer Biol. 2022;83:487–502.

    Article  CAS  PubMed  Google Scholar 

  11. Muvarak NE, Chowdhury K, Xia L, Robert C, Choi EY, Cai Y, et al. Enhancing the cytotoxic effects of PARP inhibitors with DNA demethylating agents - a potential therapy for cancer. Cancer Cell. 2016;30:637–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pulliam N, Fang F, Ozes AR, Tang J, Adewuyi A, Keer H, et al. An effective epigenetic-PARP inhibitor combination therapy for breast and ovarian cancers independent of BRCA mutations. Clin Cancer Res. 2018;24:3163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ha K, Fiskus W, Choi DS, Bhaskara S, Cerchietti L, Devaraj SG, et al. Histone deacetylase inhibitor treatment induces ‘BRCAness’ and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells. Oncotarget. 2014;5:5637–50.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guha M. HDAC inhibitors still need a home run, despite recent approval. Nat Rev Drug Discov. 2015;14:225–6.

    Article  CAS  PubMed  Google Scholar 

  15. Smith-Mungo LI, Kagan HM. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol. 1998;16:387–98.

    Article  CAS  PubMed  Google Scholar 

  16. Barker HE, Bird D, Lang G, Erler JT. Tumor-secreted LOXL2 activates fibroblasts through FAK signaling. Mol Cancer Res. 2013;11:1425–36.

    Article  CAS  PubMed  Google Scholar 

  17. Barker HE, Chang J, Cox TR, Lang G, Bird D, Nicolau M, et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res. 2011;71:1561–72.

    Article  CAS  PubMed  Google Scholar 

  18. Mahjour F, Dambal V, Shrestha N, Singh V, Noonan V, Kantarci A, et al. Mechanism for oral tumor cell lysyl oxidase like-2 in cancer development: synergy with PDGF-AB. Oncogenesis. 2019;8:34.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 2004;4:814–9.

    Article  CAS  PubMed  Google Scholar 

  20. Liu D, Zhang XX, Li MC, Cao CH, Wan DY, Xi BX, et al. C/EBPbeta enhances platinum resistance of ovarian cancer cells by reprogramming H3K79 methylation. Nat Commun. 2018;9:1739.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ganzfried BF, Riester M, Haibe-Kains B, Risch T, Tyekucheva S, Jazic I, et al. curatedOvarianData: clinically annotated data for the ovarian cancer transcriptome. Database. 2013;2013:bat013.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Papakonstantinou E, Pappa I, Androutsopoulos G, Adonakis G, Maroulis I, Tzelepi V. Comprehensive analysis of DNA methyltransferases expression in primary and relapsed ovarian carcinoma. Cancers. 2023;15:4950.

  23. Li H, Cai Q, Godwin AK, Zhang R. Enhancer of zeste homolog 2 promotes the proliferation and invasion of epithelial ovarian cancer cells. Mol Cancer Res. 2010;8:1610–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu Y, Pan S, Song Y, Pan C, Chen C, Zhu X. The prognostic value of the chromobox family in human ovarian cancer. J Cancer. 2020;11:5198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang L, Yang N, Huang J, Buckanovich RJ, Liang S, Barchetti A, et al. Transcriptional coactivator Drosophila eyes absent homologue 2 is up-regulated in epithelial ovarian cancer and promotes tumor growth. Cancer Res. 2005;65:925–32.

    Article  CAS  PubMed  Google Scholar 

  26. Guo T, Yuan D, Zhang W, Zhu D, Xiao A, Mao G, et al. Upregulation of long noncoding RNA XIST has anticancer effects on ovarian cancer through sponging miR-106a. Hum Cell. 2021;34:579–87.

    Article  CAS  PubMed  Google Scholar 

  27. Bonome T, Lee JY, Park DC, Radonovich M, Pise-Masison C, Brady J, et al. Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. Cancer Res. 2005;65:10602–12.

    Article  CAS  PubMed  Google Scholar 

  28. Stordal B, Timms K, Farrelly A, Gallagher D, Busschots S, Renaud M, et al. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation. Mol Oncol. 2013;7:567–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:2126.

    Article  PubMed  Google Scholar 

  30. Beaufort CM, Helmijr JC, Piskorz AM, Hoogstraat M, Ruigrok-Ritstier K, Besselink N, et al. Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PLoS One. 2014;9:e103988.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li Q, Zhu CC, Ni B, Zhang ZZ, Jiang SH, Hu LP, et al. Lysyl oxidase promotes liver metastasis of gastric cancer via facilitating the reciprocal interactions between tumor cells and cancer associated fibroblasts. EBioMedicine. 2019;49:157–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao L, Niu H, Liu Y, Wang L, Zhang N, Zhang G, et al. LOX inhibition downregulates MMP-2 and MMP-9 in gastric cancer tissues and cells. J Cancer. 2019;10:6481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Osawa T, Ohga N, Akiyama K, Hida Y, Kitayama K, Kawamoto T, et al. Lysyl oxidase secreted by tumour endothelial cells promotes angiogenesis and metastasis. Br J Cancer. 2013;109:2237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schilter H, Findlay AD, Perryman L, Yow TT, Moses J, Zahoor A, et al. The lysyl oxidase like 2/3 enzymatic inhibitor, PXS-5153A, reduces crosslinks and ameliorates fibrosis. J Cell Mol Med. 2019;23:1759–70.

    Article  CAS  PubMed  Google Scholar 

  35. Nilsson M, Adamo H, Bergh A, Halin Bergstrom S. Inhibition of Lysyl oxidase and Lysyl oxidase-like enzymes has tumour-promoting and tumour-suppressing roles in experimental prostate cancer. Sci Rep. 2016;6:19608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen LC, Tu SH, Huang CS, Chen CS, Ho CT, Lin HW, et al. Human breast cancer cell metastasis is attenuated by lysyl oxidase inhibitors through down-regulation of focal adhesion kinase and the paxillin-signaling pathway. Breast Cancer Res Treat. 2012;134:989–1004.

    Article  CAS  PubMed  Google Scholar 

  37. Le Naour A, Koffi Y, Diab M, Le Guennec D, Rouge S, Aldekwer S, et al. EO771, the first luminal B mammary cancer cell line from C57BL/6 mice. Cancer Cell Int. 2020;20:328.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pantelidou C, Sonzogni O, De Oliveria Taveira M, Mehta AK, Kothari A, Wang D, et al. PARP inhibitor efficacy depends on CD8(+) T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 2019;9:722–37.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Luo Y, Xia Y, Liu D, Li X, Li H, Liu J et al. Neoadjuvant PARPi or chemotherapy in ovarian cancer informs targeting effector Treg cells for homologous-recombination-deficient tumors. Cell. 2024;187:4905–4925.e24.

  40. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–91.

    Article  CAS  PubMed  Google Scholar 

  41. Ostling O, Johanson KJ. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun. 1984;123:291–8.

    Article  CAS  PubMed  Google Scholar 

  42. Coster G, Goldberg M. The cellular response to DNA damage: a focus on MDC1 and its interacting proteins. Nucleus. 2010;1:166–78.

    Article  PubMed  Google Scholar 

  43. Ruff SE, Logan SK, Garabedian MJ, Huang TT. Roles for MDC1 in cancer development and treatment. DNA Repair. 2020;95:102948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sharif SB, Zamani N, Chadwick BP. BAZ1B the protean protein. Genes. 2021;12:1541.

  45. Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature. 2009;458:591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature. 2009;457:57–62.

    Article  CAS  PubMed  Google Scholar 

  47. Avvakumov N, Cote J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene. 2007;26:5395–407.

    Article  CAS  PubMed  Google Scholar 

  48. Li T, Petreaca RC, Forsburg SL Schizosaccharomyces pombe KAT5 contributes to resection and repair of a DNA double-strand break. Genetics 2021; 218.

  49. Pozhidaeva A, Bezsonova I. USP7: structure, substrate specificity, and inhibition. DNA Repair. 2019;76:30–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fan YH, Cheng J, Vasudevan SA, Dou J, Zhang H, Patel RH, et al. USP7 inhibitor P22077 inhibits neuroblastoma growth via inducing p53-mediated apoptosis. Cell Death Dis. 2013;4:e867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu W, Li J, Song YS, Li Y, Jia YH, Zhao HD. Cdk5 links with DNA damage response and cancer. Mol Cancer. 2017;16:60.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huang E, Qu D, Zhang Y, Venderova K, Haque ME, Rousseaux MW, et al. The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death. Nat Cell Biol. 2010;12:563–71.

    Article  CAS  PubMed  Google Scholar 

  53. Courapied S, Sellier H, de Carne Trecesson S, Vigneron A, Bernard AC, Gamelin E, et al. The cdk5 kinase regulates the STAT3 transcription factor to prevent DNA damage upon topoisomerase I inhibition. J Biol Chem. 2010;285:26765–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tian B, Yang Q, Mao Z. Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nat Cell Biol. 2009;11:211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153:320–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Donati B, Lorenzini E, Ciarrocchi A. BRD4 and Cancer: going beyond transcriptional regulation. Mol Cancer. 2018;17:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pascual-Reguant L, Serra-Camprubi Q, Datta D, Cianferoni D, Kourtis S, Ganez-Zapater A, et al. Interactions between BRD4S, LOXL2, and MED1 drive cell cycle transcription in triple-negative breast cancer. EMBO Mol Med. 2023;15:e18459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26:199–212.

    Article  PubMed  Google Scholar 

  60. Dharanipragada P, Zhang X, Liu S, Lomeli SH, Hong A, Wang Y, et al. Blocking genomic instability prevents acquired resistance to MAPK inhibitor therapy in melanoma. Cancer Discov. 2023;13:880–909.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  62. Goel N, Foxall ME, Scalise CB, Wall JA, Arend RC. Strategies in overcoming homologous recombination proficiency and PARP inhibitor resistance. Mol Cancer Ther. 2021;20:1542–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wen B, Xu LY, Li EM. LOXL2 in cancer: regulation, downstream effectors and novel roles. Biochim Biophys Acta Rev Cancer. 2020;1874:188435.

    Article  CAS  PubMed  Google Scholar 

  64. Benson AB 3rd, Wainberg ZA, Hecht JR, Vyushkov D, Dong H, Bendell J, et al. A phase II randomized, double-blind, placebo-controlled study of simtuzumab or placebo in combination with gemcitabine for the first-line treatment of pancreatic adenocarcinoma. Oncologist. 2017;22:241–e215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hecht JR, Benson AB 3rd, Vyushkov D, Yang Y, Bendell J, Verma U, et al. A phase II, randomized, double-blind, placebo-controlled study of simtuzumab in combination with FOLFIRI for the second-line treatment of metastatic KRAS mutant colorectal adenocarcinoma. Oncologist. 2017;22:243–e223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ferreira S, Saraiva N, Rijo P, Fernandes AS. LOXL2 inhibitors and breast cancer progression. Antioxidants. 2021;10:312.

  67. Herranz N, Dave N, Millanes-Romero A, Pascual-Reguant L, Morey L, Diaz VM, et al. Lysyl oxidase-like 2 (LOXL2) oxidizes trimethylated lysine 4 in histone H3. FEBS J. 2016;283:4263–73.

    Article  CAS  PubMed  Google Scholar 

  68. Cebria-Costa JP, Pascual-Reguant L, Gonzalez-Perez A, Serra-Bardenys G, Querol J, Cosin M, et al. LOXL2-mediated H3K4 oxidation reduces chromatin accessibility in triple-negative breast cancer cells. Oncogene. 2020;39:79–121.

    Article  CAS  PubMed  Google Scholar 

  69. Lu X, Xin DE, Du JK, Zou QC, Wu Q, Zhang YS, et al. Loss of LOXL2 promotes uterine hypertrophy and tumor progression by enhancing H3K36ac-dependent gene expression. Cancer Res. 2022;82:4400–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFC2704203), the National Science Foundation of China (81974405, 82373332, 82372928), Hubei Natural Science Foundation Outstanding Young Talents Project (2022CFA051) and the Knowledge Innovation Program of Wuhan-Basic Research (2023020201010051).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: DL, QG, DM, YF, YX and GZ; Study supervision and coordination: DL, QG, DM, YF, YX and GZ; Basic experiment: CS, YL, KT, CC, JT, KX, WY, JC, and ZP; Clinical data collection and follow-up: CS, YL, KT, CC, JT, KX, WY, JC, and ZP; Funding acquisition: DL, QG, DM, YF, YX and GZ; Data Analysis and interpretation: all authors; Writing-original draft: CS, YL and DL; Writing-review and editing: all authors.

Corresponding authors

Correspondence to Qinglei Gao or Dan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Lin, Y., Cai, C. et al. LOXL2 reduces susceptibility to PARP inhibitors by promoting super-enhancer-regulated DNA damage repair in high-grade serous ovarian cancer. Oncogene (2025). https://doi.org/10.1038/s41388-025-03466-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-025-03466-1

Search

Quick links