Table 2 Characteristics of functional hydrogels and their roles in cell-based applications

From: Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions

Chemical composition

Cross-linking methods

Cell interactive motifs

Mechanical properties

Mesh or pore size

Degradability

Cell types

Applications

Functions

Ref

Based hydrogels

Crosslinked hydrogel components

Other functional moieties

    

Time

Conditions

    

Alginate (Alg)

Alg

CPA

Physical (Calcium-Alg coordination)

-

E: 1.2 GPa

-

-

-

hUCMSCs

Bone regeneration

CPA maintained the injectability of the paste and enhanced the mechanical strength

226

 

Alg-Fibrin

-

Physical (Calcium-Alg coordination, Interpenetrating networks)

Fibrin

-

12 ~23 nm

24 h to days

Alginate lyase

-hMSCs

-hECs

Formation of a capillary network

Fibrin exhibited adhesive properties

794

 

Alg

PLGA-AL

Physical (Calcium-Alg coordination)

-

-

 

24 h to days

Alginate lyase (β-elimination reaction)

rNPCs

Neural tissue regeneration

PLGA-AL tuned the gel’s degradation rate

795

 

-Alg

-RGD peptide

Alginate lyase

-Covalent

-Physical

RGD peptide

-

-

24 h to days

Alginate lyase (β-elimination reaction)

hOECs

Revascularization (Chick chorioallantoic membrane model)

Alginate lyase accelerated the gel’s degradation rate

796

Hyaluronic acid (HA)

-HA

-Methacrylic anhydride

-MBA

-P-aPD-L1

-IL-15

Covalent (Radical polymerization)

IL-15

-

-

Weeks

Hyaluronidase

CAR-T cells

Inhibition of post-surgery tumor recurrence (mouse melanoma resection model)

-P-aPD-L1 blocked the PD-1/PD-L1 pathway

-IL-15 maintained the activity and proliferation of CAR-T cells

28

 

-HA

-PBA

-Sodium periodate

-Methacrylic anhydride

-

Covalent (Radical polymerization)

PBA

E: 2.6 ~23.2 kPa

-

-

-

rbCCs

Cartilage regeneration

PBA enhanced the interaction of chondrocytes and hydrogel, promoting cell adhesion and aggregation through filopodia

797

 

-HA

-Methacrylate

-

Covalent (Radical polymerization)

-

-

-

Days to weeks

-

hMSCs

Endometrial regeneration (Endometrial injury rat model)

-

798

Chitosan (CS)

-CS

-

-

 

-

50~500 μm

Weeks

-

hT cells

Cancer immunotherapy

-

799

 

-CS

-Dextran

-β-GP

-

Physical (Electrostatic attraction, hydrogen bond interactions)

-

-

18.5~25.4 μm

70% in 4 weeks

Enzyme

hUCMSCs

Myocardial infarction therapy

β -GP reduced chitosan chain polarity, making the hydrogel milder and less cytotoxic

800

 

-CS

-Glyoxal

-Col I

-

Physical (Electrostatic attraction)

Col I

-

-

-

-

hBMSCs

Bone regeneration

-Glyoxal enhanced the mechanical hardness of the hydrogel

-β -GP enhanced hydrogel stability

801

Collagen (Col)

-Col I

-Methacrylate

-

Covalent (Radical polymerization)

Col I

-

-

20.9%~78.6% at 12 h

Collagenase

-rbMSCs

-rbCCs

Chondrogenesis

Methacrylate-modified gelatin reduced the gel’s degradation rate

802

 

Col I

-

-

CTX

E: 170–227 Pa

-

-

-

-hADSCs

-hUVECs

Regenerative applications

CTX regulated encapsulated cell fate (apoptosis, adhesion, and migration)

803

 

-Col I

-Alg

PCL/Gel nanofibers

Physical (Calcium-Alg coordination)

RGD peptide

E: 0.0093~0.25 MPa

-

30% in 7 days

-

rADSCs

Wound dressing (rat wound model)

Nanofibers were used as coverage of the scaffold to improve the mechanical strength of the hydrogel

804

Gelatin (Gel)

-Gel

-Methacrylate

EGCG-EF

Covalent (Radical polymerization)

-

-

458 ~519 μm2 (pore area)

-

-

-hADSCs

-hDFBs

-hUVECs

Tissue engineering applications

EGCG cleared the free radicals

805

 

-Gel

-YIGSR peptide

-QK peptide

-

Covalent (Esterification reaction)

-YIGSR peptide

-QK peptide

-

-

-

-

-hUVECs

-hGEnCs

Tissue engineering applications

-QK peptide stimulated endothelial cell growth

-YIGSR peptide promoted cell adhesion and migration

806

 

-Gel

-Methacrylate

-Alg

-

Covalent (Radical polymerization)

-

E: 6.0~11.0 kPa

-

Days to weeks

Enzyme

hUVECs

Neovascularization (Hind-limb ischemia mouse model)

-

807

Silk fibroin (SF)

-SF

-Col I

-

Physical (Interpenetrating networks)

-

-

-

-

-

hMSCs

Tissue engineering applications

-SF enhanced the mechanical properties

-Collagen provided cell adhesion sites

808

 

-SF

-SF-TA

-Cyclic RGD peptide

-

Covalent (Phenol oxidation reaction)

Cyclic RGD peptide

E: ~300 kPa

20 ~ 35 nm

Days to weeks

Protease

hMSCs

Tissue engineering applications

SF-TA enhanced the hydrogel mechanical stability and resistance to enzymatic degradation

809

 

-SF

-G-TA

-

Covalent (Dityrosine crosslinking)

RGD sequence

E: ~300 kPa

20 ~ 35 nm

Days to weeks

Protease

hMSCs

Tissue engineering applications

G-TA enhanced the hydrogel mechanical stability and resistance to enzymatic degradation

809

DNA

-DNA

-SilMA

-RGD peptide

-

-Physical

-Covalent

(Radical polymerization)

RGD peptide

-

527.5 ± 25.55 μm

Weeks

Protease

rBMSCs

Cartilage repair (Cartilage defect rat model)

The DNA constrained the SF to increase its β -fold content, allowing for the precise tuning of the surface stiffness of the hydrogels

810

 

-DNA

-IKVAV peptide

- Polyacrylamide

-

Covalent (sulfhydryl-MBS crosslinking chemistry)

IKVAV peptide

-

-

-

-

SH-SY5Y cells

Neuronal regeneration

IKVAV peptide enhanced nerve cell attachment and differentiation

246

 

-DNA

-Tetraethylene glycol

-

Physical

-

-

<10 μm

24 h

DNase I

-A549 cells

-MCF-7 cells

-HEK 293 cells

3D cell culture

-

811

Poly (ethylene glycol) (PEG)

-PEG-LA-DM

-HA

-

-Physical (Interpenetrating networks)

-Covalent (Radical polymerization)

HA

E: 180-230 kPa

-

Weeks

Hydrolysis

bCCs

Cartilage tissue regeneration

-LA promoted hydrogel degradation and macroscopic tissue deposition

-DM polymerized in situ and bore in vivo forces

812

 

-PEG

-PCL

-

Covalent (acid chloride/alcohol chemistry reaction)

-

E: 2.7~7.1 MPa

-

Weeks

-Hydrolysis

-Enzyme

hCECs

Corneal endothelial regeneration (Impaired ovine corneas model)

PCL was covalently incorporated into hydrogel to provide strong tensile properties

813

 

PEG-g-CS

-

Dynamic covalent (Schiff base reaction)

-

-

0.677±0.049 μm

-

-

Human T cells

Localized glioblastoma immunotherapy

-

27

Polyvinyl alcohol (PVA)

-PVA

-Gel

-

Physical

RGD sequence

E: 3.8 ~5.2 MPa

-

-

-

-NIH3T3 cells

-HeLa cells

Study cell behavior and function

-

16

 

-PVA

-CS

HAp

Physical

HAp

E: 109~248 kPa

-

-

Heat

rBMSCs

Bone repair (Bone defect rabbit model)

HAp enhanced the hydrogel-bone interface binding capacity

257

 

-PVA

-HA

-

Physical

-

-

-

-

-

hBMSCs

Study cell behavior and function

-

814

Polyacrylamide (Paam)

-PAAm

-DNA

-BIS

-

-Covalent

-Physical

(Interpenetrating networks)

-

-

-

-

-

HEK cells

Study cell behavior and function

DNA and BIS enhanced the hydrogel mechanical stability

815

 

-PAAm

-Alg

-

Covalent (Radical polymerization)

-

-

50-100 μm (Porosity: 91%)

-

-

hBMSCs

Tissue engineering applications

The entangled network of PAAm and Alg polymer chains bringed a higher mechanical strength

816

 

PAAm

-

Covalent (Radical polymerization)

-

E: 0.67-44 kPa

-

-

Hydrolysis

hPOD

Developing the renal chip model

-

817

  1. E elastic modulus, Alg alginate, Col collagen, Gel gelatin, RGD Arg-Gly-Asp, HA hyaluronic acid, CS chitosan, PBA phenylboronic acid, SF-TA tyramine-substituted silk fibroin, G-TA tyramine-substituted gelatin, β-GP β-glycerophosphate, SilMA methacrylate groups-modified silk fibroin, IKVAV Ile-Lys-Val-Ala-Val, PEG poly(ethylene glycol), PEG-LA-DM poly(ethylene glycol)-lactic acid-dimethacrylate, PEG-g-CS poly(ethylene glycol)-g-chitosan, PVA polyvinyl alcohol, PAAm polyacrylamide, BIS -N,N-bisacrylamide, SF silk fibroin, CPA phosphate, PLGA-AL poly(lactide-co-glycolide) microspheres loaded with the enzyme alginate lyase, PCL/Gel polycaprolactone/gelatin nanofibers, P-aPD-L1 aPDL1-conjuated platelets, EGCG-EF nanofiber particles coated with epigallocatechin-gallate, HAp hydroxyapatite, CTX carboxy-terminal telopeptide residues in collagen, APS ammonium persulfate, sulfo-MBS m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester