Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unveiling the association between HMG-CoA reductase inhibitors and bladder cancer: a comprehensive analysis using Mendelian randomization, animal models, and transcriptomics

Abstract

This study utilized Mendelian randomization (MR) analysis and genome-wide association study (GWAS) data to investigate the association between commonly prescribed drugs and bladder cancer (BLCA) risk. Our results revealed that HMG CoA reductase (HMGCR) inhibitors, specifically simvastatin, are significantly associated with reduced BLCA risk. We further showed that simvastatin could significantly inhibit BLCA proliferation and epithelial-mesenchymal transition in animal models, with transcriptomic data identifying several pathways associated with these processes. Higher expression of HMGCR were linked with BLCA development and progression, and certain blood lipids, such as lipoprotein particles and very low density lipoprotein (VLDL) cholesterol, might influence BLCA risk. These findings suggested that HMGCR inhibitors, particularly simvastatin, could be potential treatment options or adjuvant therapies for BLCA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Associations between 23 types of drugs and BLCA risk.
Fig. 2: Associations between different types of statins and BLCA risk.
Fig. 3: Simvastatin inhibited BLCA growth in vivo.
Fig. 4: Mechanisms of the effect of simvastatin on BLCA analyzed by transcriptomic analyses.
Fig. 5: The HMGCR mRNA level was correlated with the malignancy and prognosis of patients with BLCA.
Fig. 6: Associations between blood lipids and BLCA risk.
Fig. 7: Schematic illustration of the study.

Similar content being viewed by others

Data availability

The transcriptomic data have been uploaded in the GEO database under the accession number GSE270394. The GSE215949, GSE149566, and GSE13507 datasets were downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/gds). The remaining data can be accessed in the article or Supplementary information.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  Google Scholar 

  2. Cumberbatch MGK, Jubber I, Black PC, Esperto F, Figueroa JD, Kamat AM, et al. Epidemiology of Bladder Cancer: A Systematic Review and Contemporary Update of Risk Factors in 2018. Eur Urol. 2018;74:784–95.

    Article  Google Scholar 

  3. Colton T, Greenberg ER, Noller K, Resseguie L, Van Bennekom C, Heeren T, et al. Breast cancer in mothers prescribed diethylstilbestrol in pregnancy. Further follow-up. JAMA. 1993;269:2096–100.

    Article  CAS  Google Scholar 

  4. Hoover R, Gray LA, Fraumeni JF. Stilboestrol (diethylstilbestrol) and the risk of ovarian cancer. Lancet. 1977;2:533–34.

    Article  CAS  Google Scholar 

  5. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med. 2006;354:270–82.

    Article  CAS  Google Scholar 

  6. Shu XO, Gao YT, Linet MS, Brinton LA, Gao RN, Jin F, et al. Chloramphenicol use and childhood leukaemia in Shanghai. Lancet. 1987;2:934–37.

    Article  CAS  Google Scholar 

  7. Cheung CY, Tang SCW. An update on cancer after kidney transplantation. Nephrol Dial Transplant. 2019;34:914–20.

    Article  Google Scholar 

  8. Løfling L, Støer NC, Nafisi S, Ursin G, Hofvind S, Botteri E. Low-dose aspirin and risk of breast cancer: a Norwegian population-based cohort study of one million women. Eur J Epidemiol. 2023;38:413–26.

    Article  Google Scholar 

  9. Hurwitz LM, Townsend MK, Jordan SJ, Patel AV, Teras LR, Lacey JV, et al. Modification of the Association Between Frequent Aspirin Use and Ovarian Cancer Risk: A Meta-Analysis Using Individual-Level Data From Two Ovarian Cancer Consortia. J Clin Oncol. 2022;40:4207–17.

    Article  CAS  Google Scholar 

  10. Guo CG, Ma W, Drew DA, Cao Y, Nguyen LH, Joshi AD, et al. Aspirin Use and Risk of Colorectal Cancer Among Older Adults. JAMA Oncol. 2021;7:428–35.

    Article  Google Scholar 

  11. Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res. 2021;40:241.

    Article  CAS  Google Scholar 

  12. Morales DR, Morris AD. Metformin in Cancer Treatment and Prevention. Annu Rev Med. 2015;66:17–29.

    Article  CAS  Google Scholar 

  13. Ren QW, Yu SY, Teng THK, Li X, Cheung KS, Wu MZ, et al. Statin associated lower cancer risk and related mortality in patients with heart failure. Eur Heart J. 2021;42:3049–59.

    Article  Google Scholar 

  14. Clendening JW, Pandyra A, Boutros PC, El Ghamrasni S, Khosravi F, et al. Dysregulation of the mevalonate pathway promotes transformation. PNAS. 2010;107:15051–56.

    Article  CAS  Google Scholar 

  15. Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer. 2016;16:718–31.

    Article  CAS  Google Scholar 

  16. Bonovas S, Filioussi K, Tsavaris N, Sitaras NM. Use of Statins and Breast Cancer: A Meta-Analysis of Seven Randomized Clinical Trials and Nine Observational Studies. J Clin Oncol. 2005;23:8606–12.

    Article  Google Scholar 

  17. Graaf MR, Beiderbeck AB, Egberts ACG, Richel DJ, Guchelaar HJ. The risk of cancer in users of statins. J Clin Oncol. 2004;22:2388–94.

    Article  CAS  Google Scholar 

  18. Gray RT, Loughrey MB, Bankhead P, Cardwell CR, McQuaid S, O’Neill RF, et al. Statin use, candidate mevalonate pathway biomarkers, and colon cancer survival in a population-based cohort study. Br J Cancer. 2017;116:1652–59.

    Article  CAS  Google Scholar 

  19. Li X, Wu XB, Chen Q. Statin use is not associated with reduced risk of skin cancer: a meta-analysis. Br J Cancer. 2014;110:802–07.

    Article  CAS  Google Scholar 

  20. Poynter JN, Gruber SB, Higgins PDR, Almog R, Bonner JD, Rennert HS, et al. Statins and the risk of colorectal cancer. N Engl J Med. 2005;352:2184–92.

    Article  CAS  Google Scholar 

  21. Emdin CA, Khera AV, Kathiresan S. Mendelian Randomization. JAMA. 2017;318:1925–26.

    Article  Google Scholar 

  22. Zheng J, Baird D, Borges M-C, Bowden J, Hemani G, Haycock P, et al. Recent Developments in Mendelian Randomization Studies. Curr Epidemiol Rep. 2017;4:330–45.

    Article  Google Scholar 

  23. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.

    Article  Google Scholar 

  24. Zuccolo L, Holmes MV. Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int J Epidemiol. 2017;46:962–65.

    Google Scholar 

  25. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discovery. 2017;16:19–34.

    Article  CAS  Google Scholar 

  26. Wu Y, Byrne EM, Zheng Z, Kemper KE, Yengo L, Mallett AJ, et al. Genome-wide association study of medication-use and associated disease in the UK Biobank. Nat Commun. 2019;10:1–10.

    Google Scholar 

  27. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.

    Article  CAS  Google Scholar 

  28. Julkunen H, Cichońska A, Slagboom PE, Würtz P, Initiative NHUB. Metabolic biomarker profiling for identification of susceptibility to severe pneumonia and COVID-19 in the general population. eLife. 2021;10:e63033.

    Article  CAS  Google Scholar 

  29. Julkunen H, Cichońska A, Tiainen M, Koskela H, Nybo K, Mäkelä V, et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat Commun. 2023;14:604.

    Article  CAS  Google Scholar 

  30. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18.

    Article  CAS  PubMed Central  Google Scholar 

  31. Liu X, Tong X, Zou Y, Lin X, Zhao H, Tian L, et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Nat Genet. 2022;54:52–61.

    Article  CAS  Google Scholar 

  32. Yang J, Yan B, Zhao B, Fan Y, He X, Yang L, et al. Assessing the Causal Effects of Human Serum Metabolites on 5 Major Psychiatric Disorders. Schizophr Bull. 2020;46:804–13.

    Article  PubMed Central  Google Scholar 

  33. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178:1177–84.

    Article  PubMed Central  Google Scholar 

  34. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 2016;40:304–14.

    Article  PubMed Central  Google Scholar 

  35. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

    Article  PubMed Central  Google Scholar 

  36. Wang Q, Shen Y, Ye B, Hu H, Fan C, Wang T, et al. Gene expression differences between thyroid carcinoma, thyroid adenoma and normal thyroid tissue. Oncol Rep. 2018;40:3359–69.

    CAS  PubMed Central  Google Scholar 

  37. Zhang L, Chen S, Zeng X, Lin D, Li Y, Gui L, et al. Revealing the pathogenic changes of PAH based on multiomics characteristics. J Transl Med. 2019;17:231.

    Article  PubMed Central  Google Scholar 

  38. Cai J, Chen X, Wang H, Wei Z, Li M, Rong X, et al. Iron Status May Not Affect Amyotrophic Lateral Sclerosis: A Mendelian Randomization Study. Front Genet. 2021;12:617245.

    Article  CAS  PubMed Central  Google Scholar 

  39. Cai J, Li X, Wu S, Tian Y, Zhang Y, Wei Z, et al. Assessing the causal association between human blood metabolites and the risk of epilepsy. J Transl Med. 2022;20:437.

    Article  CAS  PubMed Central  Google Scholar 

  40. Wang G, Cao R, Wang Y, Qian G, Dan HC, Jiang W, et al. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway. Sci Rep. 2016;6:35783.

    Article  CAS  Google Scholar 

  41. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6:597–610.

    Article  CAS  Google Scholar 

  42. Veitonmäki T, Murtola TJ, Määttänen L, Taari K, Stenman U-H, Tammela TLJ, et al. Prostate cancer risk and nonsteroidal antiinflammatory drug use in the Finnish prostate cancer screening trial. Br J Cancer. 2014;111:1421–31.

    Article  Google Scholar 

  43. Jacobs EJ, Newton CC, Stevens VL, Gapstur SM. A large cohort study of long-term acetaminophen use and prostate cancer incidence. Cancer Epidemiol Biomarkers Prev. 2011;20:1322–28.

    Article  CAS  Google Scholar 

  44. Salinas CA, Kwon EM, FitzGerald LM, Feng Z, Nelson PS, Ostrander EA, et al. Use of aspirin and other nonsteroidal antiinflammatory medications in relation to prostate cancer risk. Am J Epidemiol. 2010;172:578–90.

    Article  Google Scholar 

  45. Carstensen B, Witte DR, Friis S. Cancer occurrence in Danish diabetic patients: duration and insulin effects. Diabetologia. 2012;55:948–58.

    Article  CAS  Google Scholar 

  46. Yang X, Ko GTC, So WY, Ma RCW, Yu LWL, Kong APS, et al. Associations of hyperglycemia and insulin usage with the risk of cancer in type 2 diabetes: the Hong Kong diabetes registry. Diabetes. 2010;59:1254–60.

    Article  CAS  Google Scholar 

  47. Yuan S, Kim JH, Xu P, Wang Z. Causal association between celiac disease and inflammatory bowel disease: A two-sample bidirectional Mendelian randomization study. Front Immunol. 2022;13:1057253.

    Article  CAS  Google Scholar 

  48. Shi Q, Wang Q, Wang Z, Lu J, Wang R. Systemic inflammatory regulators and proliferative diabetic retinopathy: A bidirectional Mendelian randomization study. Front Immunol. 2023;14:1088778.

    Article  CAS  PubMed Central  Google Scholar 

  49. Papadimitriou N, Dimou N, Tsilidis KK, Banbury B, Martin RM, Lewis SJ, et al. Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis. Nat Commun. 2020;11:597.

    Article  CAS  PubMed Central  Google Scholar 

  50. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed Central  Google Scholar 

  51. Kar SP, Brenner H, Giles GG, Huo D, Milne RL, Rennert G, et al. Body mass index and the association between low-density lipoprotein cholesterol as predicted by HMGCR genetic variants and breast cancer risk. Int J Epidemiol. 2019;48:1727–30.

    Article  Google Scholar 

  52. Orho-Melander M, Hindy G, Borgquist S, Schulz C-A, Manjer J, Melander O, et al. Blood lipid genetic scores, the HMGCR gene and cancer risk: a Mendelian randomization study. Int J Epidemiol. 2018;47:495–505.

    Article  Google Scholar 

  53. Sun L, Ding H, Jia Y, Shi M, Guo D, Yang P, et al. Associations of genetically proxied inhibition of HMG-CoA reductase, NPC1L1, and PCSK9 with breast cancer and prostate cancer. Breast Cancer Res. 2022;24:12.

    Article  CAS  PubMed Central  Google Scholar 

  54. Fang S, Yarmolinsky J, Gill D, Bull CJ, Perks CM, Consortium P, et al. Association between genetically proxied PCSK9 inhibition and prostate cancer risk: A Mendelian randomisation study. PLoS Med. 2023;20:e1003988.

    Article  CAS  PubMed Central  Google Scholar 

  55. Yarmolinsky J, Bull CJ, Vincent EE, Robinson J, Walther A, Smith GD, et al. Association Between Genetically Proxied Inhibition of HMG-CoA Reductase and Epithelial Ovarian Cancer. JAMA. 2020;323:646–55.

    Article  CAS  PubMed Central  Google Scholar 

  56. Gormley M, Yarmolinsky J, Dudding T, Burrows K, Martin RM, Thomas S, et al. Using genetic variants to evaluate the causal effect of cholesterol lowering on head and neck cancer risk: A Mendelian randomization study. PLos Genet. 2021;17:e1009525.

    Article  CAS  PubMed Central  Google Scholar 

  57. Carter P, Vithayathil M, Kar S, Potluri R, Mason AM, Larsson SC, et al. Predicting the effect of statins on cancer risk using genetic variants from a Mendelian randomization study in the UK Biobank. eLife. 2020;9:e57191.

    Article  CAS  Google Scholar 

  58. Bea F, Blessing E, Shelley MI, Shultz JM, Rosenfeld ME. Simvastatin inhibits expression of tissue factor in advanced atherosclerotic lesions of apolipoprotein E deficient mice independently of lipid lowering: potential role of simvastatin-mediated inhibition of Egr-1 expression and activation. Atherosclerosis. 2003;167:187–94.

    Article  CAS  Google Scholar 

  59. Schirris TJJ, Renkema GH, Ritschel T, Voermans NC, Bilos A, van Engelen BGM, et al. Statin-Induced Myopathy Is Associated with Mitochondrial Complex III Inhibition. Cell Metab. 2015;22:399–407.

    Article  CAS  Google Scholar 

  60. Stephens M, Roizes S, von der Weid P-Y. Off-Target Effect of Lovastatin Disrupts Dietary Lipid Uptake and Dissemination through Pro-Drug Inhibition of the Mesenteric Lymphatic Smooth Muscle Cell Contractile Apparatus. Int J Mol Sci. 2021;22:11756.

    Article  CAS  Google Scholar 

  61. Longo J, van Leeuwen JE, Elbaz M, Branchard E, Penn LZ. Statins as Anticancer Agents in the Era of Precision Medicine. Clin Cancer Res. 2020;26:5791–800.

    Article  CAS  Google Scholar 

  62. Bardou M, Barkun A, Martel M. Effect of statin therapy on colorectal cancer. Gut. 2010;59:1572–85.

    Article  CAS  Google Scholar 

  63. Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Statins are associated with a reduced risk of hepatocellular cancer: a systematic review and meta-analysis. Gastroenterology. 2013;144:323–32.

    Article  CAS  Google Scholar 

  64. Langballe R, Cronin-Fenton D, Dehlendorff C, Jensen MB, Ejlertsen B, Andersson M, et al. Statin use and risk of contralateral breast cancer: a nationwide cohort study. Br J Cancer. 2018;119:1297–305.

    Article  CAS  Google Scholar 

  65. Chang WT, Lin HW, Lin SH, Li YH. Association of Statin Use With Cancer- and Noncancer-Associated Survival Among Patients With Breast Cancer in Asia. JAMA Netw Open. 2023;6:e239515.

    Article  Google Scholar 

  66. Beckwitt CH, Clark AM, Ma B, Whaley D, Oltvai ZN, Wells A. Statins attenuate outgrowth of breast cancer metastases. Br J Cancer. 2018;119:1094–105.

    Article  CAS  Google Scholar 

  67. Nayan M, Punjani N, Juurlink DN, Finelli A, Austin PC, Kulkarni GS, et al. Statin use and kidney cancer survival outcomes: A systematic review and meta-analysis. Cancer Treat Rev. 2017;52:105–16.

    Article  CAS  Google Scholar 

  68. Wang A, Aragaki AK, Tang JY, Kurian AW, Manson JE, Chlebowski RT, et al. Statin use and all-cancer survival: prospective results from the Women’s Health Initiative. Br J Cancer. 2016;115:129–35.

    Article  CAS  PubMed Central  Google Scholar 

  69. Zhong S, Zhang X, Chen L, Ma T, Tang J, Zhao J. Statin use and mortality in cancer patients: Systematic review and meta-analysis of observational studies. Cancer Treat Rev. 2015;41:554–67.

    Article  CAS  Google Scholar 

  70. Cote DJ, Rosner BA, Smith-Warner SA, Egan KM, Stampfer MJ. Statin use, hyperlipidemia, and risk of glioma. Eur J Epidemiol. 2019;34:997–1011.

    Article  CAS  Google Scholar 

  71. Smith A, Murphy L, Sharp L, O’Connor D, Gallagher WM, Bennett K, et al. De novo post-diagnosis statin use, breast cancer-specific and overall mortality in women with stage I-III breast cancer. Br J Cancer. 2016;115:592–98.

    Article  CAS  Google Scholar 

  72. Richard PO, Ahmad AE, Bashir S, Hamilton RJ, Nam RK, Leao R, et al. Effect of statins as a secondary chemopreventive agent among individuals with non-muscle-invasive bladder cancer: A population-based analysis. Urol Oncol. 2017;35:342–48.

    Article  CAS  Google Scholar 

  73. Ferro M, Marchioni M, Lucarelli G, Vartolomei MD, Soria F, Terracciano D, et al. Association of statin use and oncological outcomes in patients with first diagnosis of T1 high grade non-muscle invasive urothelial bladder cancer: results from a multicenter study. Minerva Urol Nephrol. 2021;73:796–802.

    Google Scholar 

  74. Zhang XL, Geng J, Zhang XP, Peng B, Che JP, Yan Y, et al. Statin use and risk of bladder cancer: a meta-analysis. Cancer Causes Control. 2013;24:769–76.

    Article  Google Scholar 

  75. Symvoulidis P, Tsioutis C, Zamboglou C, Agouridis AP. The Effect of Statins on the Incidence and Prognosis of Bladder Cancer: A Systematic Review and Meta-Analysis. Curr Oncol. 2023;30:6648–65.

    Article  Google Scholar 

  76. Vinogradova Y, Coupland C, Hippisley-Cox J. Exposure to statins and risk of common cancers: a series of nested case-control studies. BMC Cancer. 2011;11:1–12.

    Article  Google Scholar 

  77. Cheng Z, Ye F, Liang Y, Xu C, Zhang Z, Ou Y, et al. Blood lipids, lipid-regulatory medications, and risk of bladder cancer: a Mendelian randomization study. Front Nutr. 2023;10:992608.

    Article  Google Scholar 

  78. Howe K, Sanat F, Thumser AE, Coleman T, Plant N. The statin class of HMG-CoA reductase inhibitors demonstrate differential activation of the nuclear receptors PXR, CAR and FXR, as well as their downstream target genes. Xenobiotica. 2011;41:519–29.

    Article  CAS  Google Scholar 

  79. Dulak J, Józkowicz A. Anti-angiogenic and anti-inflammatory effects of statins: relevance to anti-cancer therapy. Curr Cancer Drug Targets. 2005;5:579–94.

    Article  CAS  Google Scholar 

  80. Hamelin BA, Turgeon J. Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci. 1998;19:26–37.

    Article  CAS  Google Scholar 

  81. Knuuttila E, Riikonen J, Syvälä H, Auriola S, Murtola TJ. Access and concentrations of atorvastatin in the prostate in men with prostate cancer. Prostate. 2019;79:1412–19.

    Article  CAS  Google Scholar 

  82. Longo J, Hamilton RJ, Masoomian M, Khurram N, Branchard E, Mullen PJ, et al. A pilot window-of-opportunity study of preoperative fluvastatin in localized prostate cancer. Prostate Cancer Prostatic Dis. 2020;23:630–37.

    Article  CAS  Google Scholar 

  83. Kato S, Smalley S, Sadarangani A, Chen-Lin K, Oliva B, Brañes J, et al. Lipophilic but not hydrophilic statins selectively induce cell death in gynaecological cancers expressing high levels of HMGCoA reductase. J Cell Mol Med. 2010;14:1180–93.

    CAS  Google Scholar 

  84. Menter DG, Ramsauer VP, Harirforoosh S, Chakraborty K, Yang P, Hsi L, et al. Differential effects of pravastatin and simvastatin on the growth of tumor cells from different organ sites. PLoS One. 2011;6:e28813.

    Article  CAS  Google Scholar 

  85. Ahern TP, Pedersen L, Tarp M, Cronin-Fenton DP, Garne JP, Silliman RA, et al. Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J Natl Cancer Inst. 2011;103:1461–68.

    Article  CAS  Google Scholar 

  86. Cauley JA, McTiernan A, Rodabough RJ, LaCroix A, Bauer DC, Margolis KL, et al. Statin use and breast cancer: prospective results from the Women’s Health Initiative. J Natl Cancer Inst. 2006;98:700–07.

    Article  CAS  Google Scholar 

  87. Liu B, Yi Z, Guan X, Zeng Y, Ma F. The relationship between statins and breast cancer prognosis varies by statin type and exposure time: a meta-analysis. Breast Cancer Res Treat. 2017;164:1–11.

    Article  CAS  Google Scholar 

  88. Simon TG, Duberg AS, Aleman S, Hagstrom H, Nguyen LH, Khalili H, et al. Lipophilic Statins and Risk for Hepatocellular Carcinoma and Death in Patients With Chronic Viral Hepatitis: Results From a Nationwide Swedish Population. Ann Intern Med. 2019;171:318–27.

    Article  Google Scholar 

  89. Wang A, Stefanick ML, Kapphahn K, Hedlin H, Desai M, Manson JAE, et al. Relation of statin use with non-melanoma skin cancer: prospective results from the Women’s Health Initiative. Br J Cancer. 2016;114:314–20.

    Article  CAS  Google Scholar 

  90. Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol. 2020;43:1–18.

    Article  CAS  Google Scholar 

  91. Martínez-Reza I, Díaz L, García-Becerra R. Preclinical and clinical aspects of TNF-α and its receptors TNFR1 and TNFR2 in breast cancer. J Biomed Sci. 2017;24:90.

    Article  Google Scholar 

  92. Wu Y, Zhou BP. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010;102:639–44.

    Article  CAS  Google Scholar 

  93. Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsuneyama K, et al. CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages. BMC Cancer. 2014;14:949.

    Article  Google Scholar 

  94. Park ES, Yoo JM, Yoo HS, Yoon DY, Yun YP, Hong J. IL-32γ enhances TNF-α-induced cell death in colon cancer. Mol Carcinog. 2014;53:E23–35.

    Article  CAS  Google Scholar 

  95. Hoving S, Seynhaeve ALB, van Tiel ST, aan de Wiel-Ambagtsheer G, de Bruijn EA, Eggermont AMM, et al. Early destruction of tumor vasculature in tumor necrosis factor-alpha-based isolated limb perfusion is responsible for tumor response. Anticancer Drugs. 2006;17:949–59.

    Article  CAS  Google Scholar 

  96. Mackay F, Loetscher H, Stueber D, Gehr G, Lesslauer W. Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55. J Exp Med. 1993;177:1277–86.

    Article  CAS  Google Scholar 

  97. Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med. 2013;19:322–28.

    Article  CAS  Google Scholar 

  98. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood. 2006;108:253–61.

    Article  CAS  Google Scholar 

  99. Kratochvill F, Neale G, Haverkamp JM, Van de Velde L-A, Smith AM, Kawauchi D, et al. TNF Counterbalances the Emergence of M2 Tumor Macrophages. Cell Rep. 2015;12:1902–14.

    Article  CAS  Google Scholar 

  100. Lee JY, Kim JS, Kim JM, Kim N, Jung HC, Song IS. Simvastatin inhibits NF-kappaB signaling in intestinal epithelial cells and ameliorates acute murine colitis. Int Immunopharmacol. 2007;7:241–48.

    Article  CAS  Google Scholar 

  101. Ahn KS, Sethi G, Aggarwal BB. Reversal of chemoresistance and enhancement of apoptosis by statins through down-regulation of the NF-κB pathway. Biochem Pharmacol. 2008;75:907–13.

    Article  CAS  Google Scholar 

  102. Liu PC, Lu G, Deng Y, Wang CD, Su XW, Zhou JY, et al. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) Combination Therapy. PLoS One. 2017;12:e0171157.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Wu et al., Kettunen et al., Global Lipid Genetics Consortium, UK Biobank, FinnGen consortium for providing GWAS data. The excellent technical assistance of Shenjuan Li, Zilin Xu and Yuanyuan Xing at Zhongnan Hospital of Wuhan University is gratefully acknowledged. We also gratefully thank the exceptional assistance in editing diagram by Dr. Yuruo Chen. This study was supported by the grants from the National Natural Science Foundation of China (81902603), the Fundamental Research Funds for the Central Universities (4206-413100049, 2042022dx0003), and the Research Fund of Zhongnan Hospital of Wuhan University (YYXKNLJS2024001, PTPP2024001, RLYC2024001001).

Author information

Authors and Affiliations

Authors

Contributions

H.W., G.W., Z.L., W.D., Y.X. and X.W. designed the study and wrote the manuscript. H.W., G.W., Z.L., L.J., D.S., M.Y., Y.F., and Y.Z. collected the data and performed the experiments. H.W., G.W., Z.L., W.D., K.Q., and Y.Z. performed the data analysis and interpretation. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Yu Xiao, Gang Wang or Xinghuan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Li, Z., Qian, K. et al. Unveiling the association between HMG-CoA reductase inhibitors and bladder cancer: a comprehensive analysis using Mendelian randomization, animal models, and transcriptomics. Pharmacogenomics J 24, 24 (2024). https://doi.org/10.1038/s41397-024-00346-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41397-024-00346-x

This article is cited by

Search

Quick links