Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gracillin suppresses cancer progression through inducing Merlin/LATS protein-protein interaction and activating Hippo signaling pathway

Abstract

Gene therapy, epigenetic therapies, natural compounds targeted therapy, photodynamic therapy, nanoparticles, and precision medicines are becoming available to diagnose and treat cancer. Gracillin, a natural steroidal saponin extracted from herbs, has shown potent efficacy against a range of malignancies. In this study, we investigated the molecular anticancer mechanisms of gracillin. We showed that gracillin dose-dependently suppressed proliferation, migration, and invasion in breast cancer, liver cancer, and glioblastoma cells with IC50 values around 1 μM, which were associated with MST-independent activation of Hippo signaling pathway and subsequent decreased YAP activity. We demonstrated that gracillin activated the Hippo signaling by inducing Merlin/LATS protein-protein interaction (PPI). A competitive inhibitory peptide (SP) derived from the binding interface of the PPI, disrupted the interaction, abolishing the anticancer activity of gracillin. In nude mice bearing MDA-MB-231, HCCLM3, or U87MG xenograft tumor, administration of gracillin (5, 10 mg·kg−1·d−1, i.g. for 21 days) dose-dependently suppressed the tumor growth, associated with the induced Merlin/LATS PPI, activated Hippo signaling, as well as decreased YAP activity in tumor tissues. Our data demonstrate that gracillin is an efficacious therapeutic agent for cancer treatment, induction of Merlin/LATS PPI might provide proof-of-concept in developing therapeutic agent for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Gracillin suppresses proliferation, migration, and invasion in cancer cells.
Fig. 3: Gracillin activates Hippo signaling pathway in cancer cells.
Fig. 4: Gracillin exhibits anticancer effects dependent on YAP activity.
Fig. 5: Gracillin induces Merlin/LATS protein-protein interaction in cancer cells.
Fig. 6: Gracillin suppresses cell proliferation, migration, and invasion via Merlin/LATS PPI-induced activation of Hippo signaling pathway.
Fig. 7: Gracillin activates Hippo signaling and suppresses tumor growth in vivo.
Fig. 8: Schematic illustration of gracillin-induced suppression of cancer through Merlin/LATS interaction associated activation of the Hippo signaling pathway.

Similar content being viewed by others

References

  1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.

    Article  PubMed  Google Scholar 

  2. Kaur R, Bhardwaj A, Gupta S. Cancer treatment therapies: traditional to modern approaches to combat cancers. Mol Biol Rep. 2023;50:9663–76.

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Zhang Q, Chen Y, Liang CL, Liu H, Qiu F, et al. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed Pharmacother. 2020;121:109570.

    Article  CAS  PubMed  Google Scholar 

  4. Charmsaz S, Prencipe M, Kiely M, Pidgeon GP, Collins DM. Innovative technologies changing cancer treatment. Cancers. 2018;10:208.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Charmsaz S, Collins DM, Perry AS, Prencipe M. Novel strategies for cancer treatment: highlights from the 55th IACR Annual Conference. Cancers. 2019;11:1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang J, Li ZD, Hou CY, Li ZY, Li Q, Miao SY, et al. EM-2 inhibited autophagy and promoted G(2)/M phase arrest and apoptosis by activating the JNK pathway in hepatocellular carcinoma cells. Acta Pharmacol Sin. 2021;42:1139–49.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang H, Xie F, Yuan XY, Dai XT, Tian YF, Sun MM, et al. Discovery of a nitroaromatic nannocystin with potent in vivo anticancer activity against colorectal cancer by targeting AKT1. Acta Pharmacol Sin. 2024;45:1044–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fan S, Qi M, Qi Q, Miao Q, Deng L, Pan J, et al. Targeting FAPα-positive lymph node metastatic tumor cells suppresses colorectal cancer metastasis. Acta Pharm Sin B. 2024;14:682–97.

    Article  CAS  PubMed  Google Scholar 

  9. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.

    Article  PubMed  Google Scholar 

  10. Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 2018;834:188–96.

    Article  CAS  PubMed  Google Scholar 

  11. Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6:201.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang M, Lin Y, Wang C, Deng L, Chen M, Assaraf YG, et al. New insights into antiangiogenic therapy resistance in cancer: mechanisms and therapeutic aspects. Drug Resist Updates. 2022;64:100849.

    Article  CAS  Google Scholar 

  13. Szulzewsky F, Holland EC, Vasioukhin V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev Biol. 2021;475:205–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen CDK, Yi C. YAP/TAZ signaling and resistance to cancer therapy. Trends Cancer. 2019;5:283–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Casati G, Giunti L, Iorio AL, Marturano A, Galli L, Sardi I. Hippo pathway in regulating drug resistance of glioblastoma. Int J Mol Sci. 2021;22:13431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sebio A, Matsusaka S, Zhang W, Yang D, Ning Y, Stremitzer S, et al. Germline polymorphisms in genes involved in the Hippo pathway as recurrence biomarkers in stages II/III colon cancer. Pharmacogenomics J. 2016;16:312–9.

    Article  CAS  PubMed  Google Scholar 

  17. Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163:811–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19:491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang L, Yang S, Chen X, Stauffer S, Yu F, Lele SM, et al. The hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells. Mol Cell Biol. 2015;35:1350–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29:783–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Magesh S, Cai D. Roles of YAP/TAZ in ferroptosis. Trends Cell Biol. 2022;32:729–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guerrero PA, Yin W, Camacho L, Marchetti D. Oncogenic role of Merlin/NF2 in glioblastoma. Oncogene. 2015;34:2621–30.

    Article  CAS  PubMed  Google Scholar 

  23. Benhamouche S, Curto M, Saotome I, Gladden AB, Liu CH, Giovannini M, et al. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev. 2010;24:1718–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mota M, Metge BJ, Hinshaw DC, Alsheikh HA, Chen D, Samant RS, et al. Merlin deficiency alters the redox management program in breast cancer. Mol Oncol. 2021;15:942–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mota MSV, Jackson WP, Bailey SK, Vayalil P, Landar A, Rostas JW, et al. Deficiency of tumor suppressor Merlin facilitates metabolic adaptation by co-operative engagement of SMAD-Hippo signaling in breast cancer. Carcinogenesis. 2018;39:1165–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell. 2013;154:1342–55.

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Zhou H, Li F, Chan SW, Lin Z, Wei Z, et al. Angiomotin binding-induced activation of Merlin/NF2 in the Hippo pathway. Cell Res. 2015;25:801–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhuia MS, Chowdhury R, Sonia FA, Kamli H, Shaikh A, El-Nashar HAS, et al. Anticancer potential of the plant-derived saponin gracillin: a comprehensive review of mechanistic approaches. Chem Biodivers. 2023;20:e202300847.

    Article  CAS  PubMed  Google Scholar 

  29. Marciani DJ. Elucidating the mechanisms of action of saponin-derived adjuvants. Trends Pharmacol Sci. 2018;39:573–85.

    Article  CAS  PubMed  Google Scholar 

  30. Li JK, Zhu PL, Wang Y, Jiang XL, Zhang Z, Zhang Z, et al. Gracillin exerts anti-melanoma effects in vitro and in vivo: role of DNA damage, apoptosis and autophagy. Phytomedicine. 2023;108:154526.

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Liu H, Liu X, Xiao B, Zhang M, Luo Y, et al. Gracillin shows potential efficacy against non-small cell lung cancer through inhibiting the mTOR pathway. Front Oncol. 2022;12:851300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Min HY, Jang HJ, Park KH, Hyun SY, Park SJ, Kim JH, et al. The natural compound gracillin exerts potent antitumor activity by targeting mitochondrial complex II. Cell Death Dis. 2019;10:810.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang L, Zhu T, Ye H, Shen Y, Li Z, Chen L, et al. Gracillin shows potent efficacy against colorectal cancer through inhibiting the STAT3 pathway. J Cell Mol Med. 2021;25:801–12.

    Article  CAS  PubMed  Google Scholar 

  34. Pearson JD, Huang K, Pacal M, McCurdy SR, Lu S, Aubry A, et al. Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell. 2021;39:1115–34.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chan EH, Nousiainen M, Chalamalasetty RB, Schäfer A, Nigg EA, Silljé HH. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene. 2005;24:2076–86.

    Article  CAS  PubMed  Google Scholar 

  36. Rausch V, Hansen CG. The Hippo pathway, YAP/TAZ, and the plasma membrane. Trends Cell Biol. 2020;30:32–48.

    Article  CAS  PubMed  Google Scholar 

  37. Qian H, Ding CH, Liu F, Chen SJ, Huang CK, Xiao MC, et al. SRY-Box transcription factor 9 triggers YAP nuclear entry via direct interaction in tumors. Signal Transduct Target Ther. 2024;9:96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang XW, Zhou JC, Peng D, Hua F, Li K, Yu JJ, et al. Disrupting the TRIB3-SQSTM1 interaction reduces liver fibrosis by restoring autophagy and suppressing exosome-mediated HSC activation. Autophagy. 2020;16:782–96.

    Article  CAS  PubMed  Google Scholar 

  39. Parambil ST, Thankayyan SKR, Antony GR, Littleflower AB, Augustine P, Somanathan T, et al. YAP transduction drives triple-negative breast cancer aggressiveness through modulating the EGFR‒AKT axis in patient-derived xenograft cells. Med Oncol. 2023;40:137.

    Article  CAS  PubMed  Google Scholar 

  40. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173:321–37.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cha JH, Chan LC, Song MS, Hung MC. New approaches on cancer immunotherapy. Cold Spring Harb Perspect Med. 2020;10:a036863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Conlon KC, Miljkovic MD, Waldmann TA. Cytokines in the treatment of cancer. J Interferon Cytokine Res. 2019;39:6–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li T, Li Y. Quercetin acts as a novel anti-cancer drug to suppress cancer aggressiveness and cisplatin-resistance in nasopharyngeal carcinoma (NPC) through regulating the yes-associated protein/Hippo signaling pathway. Immunobiology. 2023;228:152324.

    Article  CAS  PubMed  Google Scholar 

  44. Najafi S, Majidpoor J, Mortezaee K. Extracellular vesicle-based drug delivery in cancer immunotherapy. Drug Deliv Transl Res. 2023;13:2790–806.

    Article  CAS  PubMed  Google Scholar 

  45. Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, et al. Immunotherapy: reshape the tumor immune microenvironment. Front Immunol. 2022;13:844142.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fan F, He Z, Kong LL, Chen Q, Yuan Q, Zhang S, et al. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci Transl Med. 2016;8:352ra108.

    Article  PubMed  Google Scholar 

  47. Rimel BJ, Crane EK, Hou J, Nakayama J, MacDonald J, Lutz K, et al. Tyrosine kinase inhibitor toxicities: A society of gynecologic oncology review and recommendations. Gynecol Oncol. 2023;174:148–56.

    Article  CAS  PubMed  Google Scholar 

  48. Luo HC, Wu JJ, Zhu LJ, Cai LJ, Feng J, Shen ZY, et al. Real-world treatment patterns and survival for locally advanced esophageal squamous cell carcinoma. Medicine. 2023;102:e34647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Luo M, Xu Y, Chen H, Wu Y, Pang A, Hu J, et al. Advances of targeting the YAP/TAZ-TEAD complex in the hippo pathway for the treatment of cancers. Eur J Med Chem. 2022;244:114847.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou T, Li X, Liu J, Hao J. The Hippo/YAP signaling pathway: the driver of cancer metastasis. Cancer Biol Med. 2023;20:483–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Moloudizargari M, Asghari MH, Nabavi SF, Gulei D, Berindan-Neagoe I, Bishayee A, et al. Targeting Hippo signaling pathway by phytochemicals in cancer therapy. Semin Cancer Biol. 2022;80:183–94.

    Article  CAS  PubMed  Google Scholar 

  52. Bachir S, Shah S, Shapiro S, Koehler A, Mahammedi A, Samy RN, et al. Neurofibromatosis Type 2 (NF2) and the implications for vestibular schwannoma and meningioma pathogenesis. Int J Mol Sci. 2021;22:690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Laraba L, Hillson L, de Guibert JG, Hewitt A, Jaques MR, Tang TT, et al. Inhibition of YAP/TAZ-driven TEAD activity prevents growth of NF2-null schwannoma and meningioma. Brain. 2023;146:1697–713.

    Article  PubMed  Google Scholar 

  54. Sekido Y. Inactivation of Merlin in malignant mesothelioma cells and the Hippo signaling cascade dysregulation. Pathol Int. 2011;61:331–44.

    Article  CAS  PubMed  Google Scholar 

  55. Su T, Ludwig MZ, Xu J, Fehon RG. Kibra and Merlin activate the Hippo pathway spatially distinct from and independent of expanded. Dev Cell. 2017;40:478–90.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tang R, Chen P, Wang Z, Wang L, Hao H, Hou T, et al. Characterizing the stabilization effects of stabilizers in protein-protein systems with end-point binding free energy calculations. Brief Bioinforma. 2022;23:bbac127.

    Article  Google Scholar 

  57. Guillory X, Wolter M, Leysen S, Neves JF, Kuusk A, Genet S, et al. Fragment-based differential targeting of PPI stabilizer interfaces. J Med Chem. 2020;63:6694–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Konstantinidou M, Arkin MR. Molecular glues for protein-protein interactions: Progressing toward a new dream. Cell Chem Biol. 2024;31:1064–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schäfer SC, Voll AM, Bracher A, Ley SV, Hausch F. Antascomicin B stabilizes FKBP51-Akt1 complexes as a molecular glue. Bioorg Med Chem Lett. 2024;104:129728.

    Article  PubMed  Google Scholar 

  60. Xiang YC, Peng P, Liu XW, Jin X, Shen J, Zhang T, et al. Paris saponin VII, a Hippo pathway activator, induces autophagy and exhibits therapeutic potential against human breast cancer cells. Acta Pharmacol Sin. 2022;43:1568–80.

    Article  CAS  PubMed  Google Scholar 

  61. Peng P, Ren Y, Wan F, Tan M, Wu H, Shen J, et al. Sculponeatin A promotes the ETS1-SYVN1 interaction to induce SLC7A11/xCT-dependent ferroptosis in breast cancer. Phytomedicine. 2023;117:154921.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81973341), the Guangdong Basic and Applied Basic Research Foundation (2024A1515013108), and the Medical Joint Fund of Jinan University (YXJC2022002).

Author information

Authors and Affiliations

Authors

Contributions

JXS designed the protocols, performed experiments, drew the figures, and wrote the manuscript. HXZ, ZJZ, and XFZ performed experiments. QMZ, SJL, JQL, SYY, YQL, and RJY contributed to the data collection. XSZ, KC, and HXP provided technical support. ZSL, and HYT contributed to data analysis. MC, YY, QQ, and YBZ funding acquisition, project administration, supervision, revise the manuscript.

Corresponding authors

Correspondence to Mei Cheng, Yu Yan, Qi Qi or Yu-bo Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Jx., Zhou, Hx., Zhang, Zj. et al. Gracillin suppresses cancer progression through inducing Merlin/LATS protein-protein interaction and activating Hippo signaling pathway. Acta Pharmacol Sin 46, 2016–2028 (2025). https://doi.org/10.1038/s41401-025-01514-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-025-01514-w

Keywords

Search

Quick links