Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

SKP2 inhibition activates tumor cell-intrinsic immunity by inducing DNA replication stress and genomic instability

Abstract

Background

S-phase kinase-associated protein 2 (SKP2) is a typical oncogene aberrantly overexpressing in a variety of cancer types, but it remains elusive whether SKP2 regulates the antitumor immunity of triple-negative breast cancer.

Methods

The efficacy of anti-PD-1 was evaluated in the orthotopic xenografts of immunocompetent mice models. The infiltration of cytotoxic T cells in tumor microenvironment(TME) were assessed by immunofluorescence staining. The levels of pro-inflammatory chemokines were analyzed by ELISA. The protein interaction was analyzed by co-immunoprecipitation and GST pull-down. The genomic instability was analyzed by fluorescent microscopy.

Results

SKP2 inhibition significantly improved the antitumor efficacy of immune checkpoint blockade (ICB). Furthermore, SKP2 inhibition activated the cGAS/STING signal pathway and induced the secretion of pro-inflammatory chemokines, thereby promoting cytotoxic T cell infiltration. Additionally, we identified CDC6, a DNA replication licensing factor as a novel substrate of SKP2 in addition to CDT1. SKP2 induced protein degradation of CDC6 and CDT1 through the ubiquitin-proteasome pathway. Conversely, SKP2 inhibition elevated CDC6 and CDT1 protein levels, which caused DNA aberrant replication, DNA damage and genomic instability, thereby resulting in the accumulation of cytosolic DNA, activating cGAS/STING signaling pathway and improving antitumor immunity.

Conclusion

SKP2 may be used as an effective therapeutic target to enable ICB antitumor immunotherapy.

Social media

Peng et al. found that SKP2 inhibition improved the antitumor immunotherapy by activating tumor cell-intrinsic immunity, thereby providing evidences that SKP2 may be used as an effective therapeutic target to enable ICB antitumor immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SKP2 depletion inhibited tumor growth and enhanced T cell infiltration.
Fig. 2: SKP2 Inhibition activated the cGAS/STING signaling pathway and induced the secretion of pro-inflammatory cytokines/chemokines.
Fig. 3: SKP2 knockdown induced aberrant DNA replication and caused DNA damage and genomic instability.
Fig. 4: SKP2 regulates CDC6 protein ubiquitylation and degradation.
Fig. 5: SKP2 knockdown activated cGAS/STING signaling pathway through the aberrant elevation of CDC6 and CDT1.
Fig. 6: SKP2 inhibition enhanced tumor sensitivity to anti-PD-1 immunotherapy.

Similar content being viewed by others

Data availability

The raw data of RNA sequencing are deposited in the NCBI’s Bioproject database (BioProject ID: PRJNA1058858).

References

  1. DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69:438–51.

    Article  PubMed  Google Scholar 

  2. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N. Engl J Med. 2010;363:1938–48.

    Article  CAS  PubMed  Google Scholar 

  3. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13:674–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:61.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  6. Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 2018;175:313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zimmerli D, Brambillasca CS, Talens F, Bhin J, Linstra R, Romanens L, et al. MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling. Nat Commun. 2022;13:6579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang W, Liu W, Jia L, Chen D, Chang I, Lake M, et al. Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress. Mol Cell. 2021;81:2148–65.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw. 2020;18:479–89.

    Article  CAS  PubMed  Google Scholar 

  10. Emens LA. Breast cancer immunotherapy: Facts and hopes. Clin Cancer Res. 2018;24:511–20.

    Article  CAS  PubMed  Google Scholar 

  11. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pantelidou C, Sonzogni O, De Oliveria Taveira M, Mehta AK, Kothari A, Wang D, et al. PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 2019;9:722–37.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nagarsheth N, Peng D, Kryczek I, Wu K, Li W, Zhao E, et al. PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer. Cancer Res. 2016;76:275–82.

    Article  CAS  PubMed  Google Scholar 

  14. Dangaj D, Bruand M, Grimm AJ, Ronet C, Barras D, Duttagupta PA, et al. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell. 2019;35:885–900.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cai Z, Moten A, Peng D, Hsu CC, Pan BS, Manne R, et al. The skp2 pathway: A critical target for cancer therapy. Semin Cancer Biol. 2020;67:16–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Asmamaw MD, Liu Y, Zheng YC, Shi XJ, Liu HM. Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev. 2020;40:1920–49.

    Article  CAS  PubMed  Google Scholar 

  17. Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, Obuse C, et al. Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J. 2006;25:1126–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chan CH, Morrow JK, Li CF, Gao Y, Jin G, Moten A, et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell. 2013;154:556–68.

    Article  CAS  PubMed  Google Scholar 

  19. Inuzuka H, Gao D, Finley LWS, Yang W, Wan L, Fukushima H, et al. Acetylation-dependent regulation of Skp2 function. Cell. 2012;150:179–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang W, Cao L, Sun Z, Xu J, Tang L, Chen W, et al. Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation. Cell Cycle. 2016;15:1344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Radke S, Pirkmaier A, Germain D. Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer. Oncogene. 2005;24:3448–58.

    Article  CAS  PubMed  Google Scholar 

  22. Shen L, Qu X, Li H, Xu C, Wei M, Wang Q, et al. NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis. Oncogene. 2018;37:1759–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang H, Hu S, Chen X, Shi H, Chen C, Sun L, et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci USA. 2017;114:1637–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461:788–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Long ZJ, Wang JD, Xu JQ, Lei XX, Liu Q. cGAS/STING cross-talks with cell cycle and potentiates cancer immunotherapy. Mol Ther. 2022;30:1006–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walter D, Hoffmann S, Komseli E-S, Rappsilber J, Gorgoulis V, Sørensen CS. SCF(Cyclin F)-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun. 2016;7:10530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cánovas B, Igea A, Sartori AA, Gomis RR, Paull TT, Isoda M, et al. Targeting p38α increases DNA damage, chromosome instability, and the anti-tumoral response to taxanes in breast cancer cells. Cancer Cell. 2018;33:1094–1110.e8.

    Article  PubMed  Google Scholar 

  28. Miller KN, Victorelli SG, Salmonowicz H, Dasgupta N, Liu T, Passos JF, et al. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell. 2021;184:5506–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548:466–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548:461–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Xie P, Lu L, Wang J, Diao L, Liu Z, et al. An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nat Commun. 2017;8:347.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Petersen BO, Lukas J, Sørensen CS, Bartek J, Helin K. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J. 1999;18:396–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang JY, Liu GZ, Wilmott JS, La T, Feng YC, Yari H, et al. Skp2-mediated stabilization of MTH1 promotes survival of melanoma cells upon oxidative stress. Cancer Res. 2017;77:6226–39.

    Article  CAS  PubMed  Google Scholar 

  34. Ferrena A, Wang J, Zhang R, Karadal-Ferrena B, Al-Hardan W, Singh S, et al. SKP2 knockout in Rb1/p53-deficient mouse models of osteosarcoma induces immune infiltration and drives a transcriptional program with a favorable prognosis. Mol Cancer Ther. 2024;23:223–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li X, Zhao Q, Liao R, Sun P, Wu X. The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem. 2003;278:30854–8.

    Article  CAS  PubMed  Google Scholar 

  36. Sanada S, Maekawa M, Tate S, Nakaoka H, Fujisawa Y, Sayama K, et al. SPOP is essential for DNA replication licensing through maintaining translation of CDT1 and CDC6 in HaCaT cells. Biochem Biophys Res Commun. 2023;651:30–38.

    Article  CAS  PubMed  Google Scholar 

  37. Ubhi T, Brown GW. Exploiting DNA replication stress for cancer treatment. Cancer Res. 2019;79:1730–9.

    Article  CAS  PubMed  Google Scholar 

  38. Qi X, Liu Y, Peng Y, Fu Y, Fu Y, Yin L, et al. UHRF1 promotes spindle assembly and chromosome congression by catalyzing EG5 polyubiquitination. J Cell Biol. 2023;222:e202210093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sokač M, Ahrenfeldt J, Litchfield K, Watkins TBK, Knudsen M, Dyrskjøt L, et al. Classifying cGAS-STING activity links chromosomal instability with immunotherapy response in metastatic bladder cancer. Cancer Res Commun. 2022;2:762–71.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Beernaert B, Parkes EE. cGAS-STING signalling in cancer: striking a balance with chromosomal instability. Biochem Soc Trans. 2023;51:539–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer. 2021;124:359–67.

    Article  CAS  PubMed  Google Scholar 

  42. Schadt L, Sparano C, Schweiger NA, Silina K, Cecconi V, Lucchiari G, et al. Cancer-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 2019;29:1236–48.e7.

    Article  CAS  PubMed  Google Scholar 

  43. Li A, Yi M, Qin S, Song Y, Chu Q, Wu K. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol. 2019;12:35.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate Personal Biotechnology Co., Ltd (Shanghai, China) for RNAseq analysis.

Funding

This work was supported by grants from the National Natural Science Foundation of China (NSFC 81874096、NSFC 82303867 and NSFC 81572542), Research Project of Key Discipline of Guangdong Province (2019GDXK0010), Science and Technology Program of Guangzhou City (202201010161), Key team of basic and clinical research on tumor immunotherapy, Guangdong Pharmaceutical University, Project No. 2024ZZ10 and the 2024 Science and Technology Innovation Project of Guangdong Medical Products Administration “Research and Evaluation of Key Technologies for Drug Safety Risk Management” (No. 2024ZDZ10).

Author information

Authors and Affiliations

Authors

Contributions

YCP performed experiments, analyzed data and wrote the manuscript; XLQ performed experiments and wrote the manuscript; LYD, YHL and SZC participated in data analysis; JJH participated in animal studies and ELISA assays; RRZ participated in the real-time quantitative PCR; YMF participated in co-IP assays; LLY, TGD and YBY participated in Western Blot and ubiquitination assays; LX designed the project, supervised all experiments, analyzed the results, and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiong Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) at the Institute of Laboratory Animal Science (License Number:00320412), Guangdong Pharmaceutical University (Guangzhou, China), and conformed to the relevant regulatory standards.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Qi, X., Ding, L. et al. SKP2 inhibition activates tumor cell-intrinsic immunity by inducing DNA replication stress and genomic instability. Br J Cancer 132, 81–92 (2025). https://doi.org/10.1038/s41416-024-02909-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-024-02909-y

Search

Quick links