Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

Heterogeneity of tertiary lymphoid structures predicts the response to neoadjuvant therapy and immune microenvironment characteristics in triple-negative breast cancer

Abstract

Background

Tertiary lymphoid structures (TLSs) impact cancer outcomes, including in triple-negative breast cancer (TNBC), where their role in immune modulation during neoadjuvant therapy (NAT) is underexplored.

Methods

This study employed single-cell RNA sequencing (scRNA-seq), multiplex immunofluorescence (mIF) staining, and radiomic techniques to evaluate TLSs and the tumour microenvironment (TME) in TNBC patient samples before and after NAT.

Results

The presence of TLSs in TNBC was associated with B-cell maturation and T-cell activation. Compared with TLS-low TNBC, TLS-high TNBC showed significantly greater expression of immunoglobulin family genes (IGHM and IGHG1) in B cells and greater cytotoxicity of neoantigen-specific CD8 + T cells (neoTCR8). Additionally, mIF revealed notable differences between TLSs and the TME in TNBC. Although CD8 + T-cell levels do not predict the NAT response effectively, TLS maturity strongly correlated with better NAT outcomes and prognosis (P < 0.05). An imaging biomarker scoring system was also developed to predict TLS status and NAT efficacy.

Conclusion

Our results demonstrated changes in TLSs and the TME in TNBC patients post-NAT. These findings confirm the predictive value of mature TLSs (mTLSs) and support the use of personalised immunotherapy based on post-NAT immune characteristics, thereby improving clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impact of TLSs on BC Prognosis.
Fig. 2: Functional roles of B Cells within TLSs in TNBC.
Fig. 3: Functional T cells within TLSs in TNBC.
Fig. 4: CNV disruption in TLS formation.
Fig. 5: Identification of TLSs in BC.
Fig. 6: Assessing the heterogeneity of TLS and TME using mIF.
Fig. 7: Predictive model of TLSs using DCE-MRI radiomics and machine learning.

Similar content being viewed by others

Data availability

The data are available upon reasonable request. All data relevant to this study are included in the article or uploaded as online supplemental information.

Code availability

The underlying code for this study, along with the associated training and validation datasets, is not publicly available. However, it can be made available to qualified researchers upon a reasonable request to the corresponding author.

References

  1. Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 2022;66:15–23.

    PubMed  PubMed Central  Google Scholar 

  2. Leon-Ferre RA, Goetz MP. Advances in systemic therapies for triple negative breast cancer. BMJ. 2023;381:e071674.

    PubMed  Google Scholar 

  3. Sharma P, Stecklein SR, Yoder R, Staley JM, Schwensen K, O’Dea A, et al. Clinical and Biomarker Findings of Neoadjuvant Pembrolizumab and Carboplatin Plus Docetaxel in Triple-Negative Breast Cancer: NeoPACT Phase 2 Clinical Trial. JAMA Oncol. 2024;10:227–35.

    PubMed  Google Scholar 

  4. Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, et al. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol. 2022;15:121.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuroda H, Jamiyan T, Yamaguchi R, Kakumoto A, Abe A, Harada O, et al. Tumor-infiltrating B cells and T cells correlate with postoperative prognosis in triple-negative carcinoma of the breast. BMC Cancer. 2021;21:286.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang N-N, Qu F-J, Liu H, Li Z-J, Zhang Y-C, Han X, et al. Prognostic impact of tertiary lymphoid structures in breast cancer prognosis: a systematic review and meta-analysis. Cancer Cell Int. 2021;21:536.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang Q, Wu S. Tertiary lymphoid structures are critical for cancer prognosis and therapeutic response. Front Immunol. 2022;13:1063711.

    CAS  PubMed  Google Scholar 

  8. Wang Q, Sun K, Liu R, Song Y, Lv Y, Bi P, et al. Single-cell transcriptome sequencing of B-cell heterogeneity and tertiary lymphoid structure predicts breast cancer prognosis and neoadjuvant therapy efficacy. Clin Transl Med. 2023;13:e1346.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pandey PR, Young KH, Kumar D, Jain N. RNA-mediated immunotherapy regulating tumor immune microenvironment: next wave of cancer therapeutics. Mol Cancer. 2022;21:58.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun X, Liu W, Sun L, Mo H, Feng Y, Wu X, et al. Maturation and abundance of tertiary lymphoid structures are associated with the efficacy of neoadjuvant chemoimmunotherapy in resectable non-small cell lung cancer. J Immunother Cancer. 2022;10:11.

  11. Siliņa K, Soltermann A, Attar FM, Casanova R, Uckeley ZM, Thut H, et al. Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid Structures and Are Impaired by Corticosteroids in Lung Squamous Cell Carcinoma. Cancer Res. 2018;78:1308–20.

    PubMed  Google Scholar 

  12. Al-Rawi DH, Lettera E, Li J, DiBona M, Bakhoum SF. Targeting chromosomal instability in patients with cancer. Nat Rev Clin Oncol. 2024;21:645–59.

    PubMed  Google Scholar 

  13. Drews RM, Hernando B, Tarabichi M, Haase K, Lesluyes T, Smith PS, et al. A pan-cancer compendium of chromosomal instability. Nature. 2022;606:976–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486:395–9.

    CAS  PubMed  Google Scholar 

  15. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012;150:165–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen L, Chen L, Ni H, Shen L, Wei J, Xia Y, et al. Prediction of CD3 T cells and CD8 T cells expression levels in non-small cell lung cancer based on radiomic features of CT images. Front Oncol. 2023;13:1104316.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pan D, Chen H, Xu J, Lin X, Li L. Evaluation of vital genes correlated with CD8 + T cell infiltration as prognostic biomarkers in stomach adenocarcinoma. BMC Gastroenterol. 2023;23:399.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang W, Qiu X, Luo Y, Luo J, Liu Y, Xi J, et al. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis. J Transl Med. 2023;21:598.

    PubMed  PubMed Central  Google Scholar 

  19. Zhou H, Luo Q, Wu W, Li N, Yang C, Zou L. Radiomics-guided checkpoint inhibitor immunotherapy for precision medicine in cancer: A review for clinicians. Front Immunol. 2023;14:1088874.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shiao SL, Gouin KH, Ing N, Ho A, Basho R, Shah A, et al. Single-cell and spatial profiling identify three response trajectories to pembrolizumab and radiation therapy in triple negative breast cancer. Cancer Cell. 2024;42:70–84.

  21. Pal B, Chen Y, Vaillant F, Capaldo BD, Joyce R, Song X, et al. A single-cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. EMBO J. 2021;40:e107333.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang B, Liu J, Han Y, Deng Y, Li J, Jiang Y. The Presence of Tertiary Lymphoid Structures Provides New Insight Into the Clinicopathological Features and Prognosis of Patients With Breast Cancer. Front Immunol. 2022;13:868155.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li R, Berglund A, Zemp L, Dhillon J, Putney R, Kim Y, et al. The 12-CK Score: Global Measurement of Tertiary Lymphoid Structures. Front Immunol. 2021;12:694079.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeng Z, Li J, Zhang J, Li Y, Liu X, Chen J, et al. Immune and stromal scoring system associated with tumor microenvironment and prognosis: a gene-based multi-cancer analysis. J Transl Med. 2021;19:330.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20:296.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Isaeva OI, Sharonov GV, Serebrovskaya EO, Turchaninova MA, Zaretsky AR, Shugay M, et al. Intratumoral immunoglobulin isotypes predict survival in lung adenocarcinoma subtypes. J Immunother Cancer. 2019;7:279.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun Y-P, Ke Y-L, Li X. Prognostic value of CD8+ tumor-infiltrating T cells in patients with breast cancer: A systematic review and meta-analysis. Oncol Lett. 2023;25:39.

    CAS  PubMed  Google Scholar 

  28. Zheng C, Fass JN, Shih Y-P, Gunderson AJ, Sanjuan Silva N, Huang H, et al. Transcriptomic profiles of neoantigen-reactive T cells in human gastrointestinal cancers. Cancer Cell. 2022;40:410–23.

  29. Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, Desmedt C, et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med. 2021;27:820–32.

    CAS  PubMed  Google Scholar 

  30. Simoni Y, Becht E, Fehlings M, Loh CY, Koo S-L, Teng KWW, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018;557:575–9.

    CAS  PubMed  Google Scholar 

  31. Leem G, Jeon M, Kim KW, Jeong S, Choi SJ, Lee YJ, et al. Tumour-infiltrating bystander CD8+ T cells activated by IL-15 contribute to tumour control in non-small cell lung cancer. Thorax. 2022;77:769–80.

    PubMed  Google Scholar 

  32. Narvaez D, Nadal J, Nervo A, Costanzo MV, Paletta C, Petracci FE, et al. The Emerging Role of Tertiary Lymphoid Structures in Breast Cancer: A Narrative Review. Cancers (Basel). 2024;16:396.

  33. Kang W, Feng Z, Luo J, He Z, Liu J, Wu J, et al. Tertiary Lymphoid Structures in Cancer: The Double-Edged Sword Role in Antitumor Immunity and Potential Therapeutic Induction Strategies. Front Immunol. 2021;12:689270.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pusztai L, Yau C, Wolf DM, Han HS, Du L, Wallace AM, et al. Durvalumab with olaparib and paclitaxel for high-risk HER2-negative stage II/III breast cancer: Results from the adaptively randomized I-SPY2 trial. Cancer Cell. 2021;39:989–98.

  35. McArthur H, Cortés J, Dent R, O’Shaughnessy J, Pusztai L, Küemmel S, et al. Abstract PD3-01: Neoadjuvant pembrolizumab + chemotherapy vs placebo + chemotherapy followed by adjuvant pembrolizumab vs placebo for early TNBC: Post hoc analysis of adjuvant radiation therapy in the phase 3 KEYNOTE-522 study. Cancer Res. 2023;83(5_Supplement):PD3-01-PD3-01.

  36. Voorwerk L, Slagter M, Horlings HM, Sikorska K, van de Vijver KK, de Maaker M, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med. 2019;25:920–8.

    CAS  PubMed  Google Scholar 

  37. Mariniello A, Nasti TH, Chang DY, Hashimoto M, Malik S, McManus DT, et al. Platinum-Based Chemotherapy Attenuates the Effector Response of CD8 T Cells to Concomitant PD-1 Blockade. Clin Cancer Res. 2024;30:1833–45.

    CAS  PubMed  Google Scholar 

  38. Lu J-C, Wu L-L, Sun Y-N, Huang X-Y, Gao C, Guo X-J, et al. Macro CD5L+ deteriorates CD8+T cells exhaustion and impairs combination of Gemcitabine-Oxaliplatin-Lenvatinib-anti-PD1 therapy in intrahepatic cholangiocarcinoma. Nat Commun. 2024;15:621.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu H, Lou H, Wengert G, Paudel R, Patel N, Desai S, et al. Tumor and local lymphoid tissue interaction determines prognosis in high-grade serous ovarian cancer. Cell Rep Med. 2023;4:101092.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sarradin V, Lusque A, Filleron T, Dalenc F, Franchet C. Immune microenvironment changes induced by neoadjuvant chemotherapy in triple-negative breast cancers: the MIMOSA-1 study. Breast Cancer Res. 2021;23:61.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang H, Ye L, Yu X, Jin K, Wu W. Neoadjuvant therapy alters the immune microenvironment in pancreatic cancer. Front Immunol. 2022;13:956984.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Barmpoutis P, Di Capite M, Kayhanian H, Waddingham W, Alexander DC, Jansen M, et al. Tertiary lymphoid structures (TLS) identification and density assessment on H&E-stained digital slides of lung cancer. PLoS One. 2021;16:e0256907.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang R, Xu J, Wang W, Meng Q, Shao C, Zhang Y, et al. Targeting neoadjuvant chemotherapy-induced metabolic reprogramming in pancreatic cancer promotes anti-tumor immunity and chemo-response. Cell Rep Med. 2023;4:101234.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen Y, Wu Y, Yan G, Zhang G. Tertiary lymphoid structures in cancer: maturation and induction. Front Immunol. 2024;15:1369626.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lauss M, Donia M, Svane IM, Jönsson G. B Cells and Tertiary Lymphoid Structures: Friends or Foes in Cancer Immunotherapy? Clin Cancer Res. 2022;28:1751–8.

    CAS  PubMed  Google Scholar 

  46. Liang Y, Lü W, Zhang X, Lü B. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes before and after neoadjuvant chemotherapy in cervical cancer. Diagn Pathol. 2018;13:93.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dias Costa A, Väyrynen SA, Chawla A, Zhang J, Väyrynen JP, Lau MC, et al. Neoadjuvant Chemotherapy Is Associated with Altered Immune Cell Infiltration and an Anti-Tumorigenic Microenvironment in Resected Pancreatic Cancer. Clin Cancer Res. 2022;28:5167–79.

    CAS  PubMed  Google Scholar 

  48. Lu Y, Zhao Q, Liao J-Y, Song E, Xia Q, Pan J, et al. Complement Signals Determine Opposite Effects of B Cells in Chemotherapy-Induced Immunity. Cell. 2020;180:1081–97.e24.

  49. Panthi B, Adrada BE, Candelaria RP, Guirguis MS, Yam C, Boge M, et al. Assessment of Response to Neoadjuvant Systemic Treatment in Triple-Negative Breast Cancer Using Functional Tumor Volumes from Longitudinal Dynamic Contrast-Enhanced MRI. Cancers (Basel). 2023;15:1025.

  50. Yu Y, Tan Y, Xie C, Hu Q, Ouyang J, Chen Y, et al. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer. JAMA Netw Open. 2020;3:e2028086.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff members of the TCGA and GEO Research Network, as well as all of the authors, for making their valuable research data public.

Funding

The present study was supported by the High-level Talent Introduction Project of Fujian Cancer Hospital (No.: F2328R-GC301-01) and the High-level Talent Training Program of Fujian Cancer Hospital (No.: 2024YNG03).

Author information

Authors and Affiliations

Authors

Contributions

CGS, SCT and ZHL supported and designed the study. QW, XWH, XFL, YS, and JLL collected, processed, and analysed the datasets. CXW, ZRJ, and XWH verified the data. QW and YSY wrote the manuscript. All of the authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Zhenhui Li, Shicong Tang or Chuangui Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study was approved by the Ethics Committee of Yunnan Provincial Cancer Hospital (Approval No. KYLX2024-060) and Fujian Cancer Hospital (Approval No. K2024-056-01), and written informed consent was obtained from all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Yu, Y., Wang, C. et al. Heterogeneity of tertiary lymphoid structures predicts the response to neoadjuvant therapy and immune microenvironment characteristics in triple-negative breast cancer. Br J Cancer 132, 295–310 (2025). https://doi.org/10.1038/s41416-024-02917-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-024-02917-y

This article is cited by

Search

Quick links