Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Deciphering the role of IGF2BP2 and PRMT5 in gallbladder cancer progression: insights from multi-omics analysis

Abstract

Background

Gallbladder cancer (GBC) is a highly aggressive malignancy with limited therapeutic options and a poor prognosis. Elucidating the molecular mechanisms driving GBC progression is essential for identifying novel therapeutic targets.

Methods

Single-cell transcriptomics, high-throughput sequencing, and proteomics techniques were employed to investigate the role of the IGF2BP2-PRMT5 axis in GBC. Functional assays were conducted to assess cell proliferation, invasion, and migration, while mechanistic studies examined the impact of N6-methyladenosine (m6A) modifications and downstream signalling pathways. Furthermore, a humanised mouse model was utilised to examine the impact of this axis on immune cell infiltration and tumour immune evasion.

Results

IGF2BP2 was found to stabilise PRMT5 expression via m6A modifications, thereby promoting GBC cell proliferation, invasion, and migration. Mechanistically, PRMT5 activated the AKT/mTOR pathway, upregulated SREBP1, and reprogrammed lipid metabolism, leading to increased lipid synthesis and accumulation. Functional assays and in vivo experiments revealed that modulation of the IGF2BP2-PRMT5 axis significantly influenced immune cell infiltration, fostering immune evasion.

Conclusions

The IGF2BP2-PRMT5 axis is critical in GBC progression by orchestrating metabolic reprogramming and immune modulation. Targeting this axis holds potential as a therapeutic strategy for combating GBC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cell sequencing reveals the immune inhibitory microenvironment in GBC.
Fig. 2: High-throughput sequencing results reveal significantly higher expression of IGF2BP2 in GBC tissue.
Fig. 3: The impact of IGF2BP2 on GBC proliferation, invasion, and migration in terms of silence/expression.
Fig. 4: The role of IGF2BP2 in GBC immunosuppression.
Fig. 5: IGF2BP2 stabilises PRMT5 through m6A modification.
Fig. 6: Effect of PRMT5 overexpression on reversing the silencing effect of IGF2BP2.
Fig. 7: The impact of PRMT5 on lipid metabolism in GBC cells.
Fig. 8: Impact of PRMT5 on the expression of fatty acid synthase via upregulation of SREBP1.
Fig. 9: Impact of PRMT5 on lipid metabolism via activation of the AKT/mTOR signalling pathway.
Fig. 10: Impact of PRMT5 on the proliferation, invasion, and migration of GBC cells via the AKT/mTOR axis.
Fig. 11: The impact of PRMT5 on GBC immune evasion through the AKT/mTOR axis upregulating SREBP1.
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article and/or its supplementary material files. Further enquiries can be directed to the corresponding author.

References

  1. Lamarca A, Edeline J, Goyal L. How I treat biliary tract cancer. ESMO Open. 2022;7:100378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Valle JW, Kelley RK, Nervi B, Oh DY, Zhu AX. Biliary tract cancer. Lancet. 2021;397:428–44.

    Article  CAS  PubMed  Google Scholar 

  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71:209–49.

    Article  Google Scholar 

  4. Roa JC, García P, Kapoor VK, Maithel SK, Javle M, Koshiol J. Gallbladder cancer. Nat Rev Dis Primers. 2022. https://doi.org/10.1038/s41572-022-00398-y.

  5. Feo CF, Ginesu GC, Fancellu A, Perra T, Ninniri C, Deiana G, et al. Current management of incidental gallbladder cancer: a review. Int J Surg. 2022;98:106234.

    Article  PubMed  Google Scholar 

  6. Benson AB, D’Angelica MI, Abrams T, Abbott DE, Ahmed A, Anaya DA, et al. NCCN Guidelines® Insights: Biliary Tract Cancers, Version 2.2023. J Natl Compr Cancer Netw. 2023;21:694–704.

    Article  CAS  Google Scholar 

  7. Okumura K, Gogna S, Gachabayov M, Felsenreich DM, McGuirk M, Rojas A, et al. Gallbladder cancer: historical treatment and new management options. WJGO. 2021;13:1317–35. https://doi.org/10.4251/wjgo.v13.i10.1317.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang X, Liu C, Chen J, Chen L, Ren X, Hou M, et al. Single-cell dissection of remodeled inflammatory ecosystem in primary and metastatic gallbladder carcinoma. Cell Discov. 2022. https://doi.org/10.1038/s41421-022-00445-8.

  9. Wang J, Chen L, Qiang P. The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int. 2021. https://doi.org/10.1186/s12935-021-01799-x.

  10. Xu X, Yu Y, Zong K, Lv P, Gu Y. Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway. J Exp Clin Cancer Res. 2019. https://doi.org/10.1186/s13046-019-1470-y.

  11. Cui J, Tian J, Wang W, He T, Li X, Gu C, et al. IGF2BP2 promotes the progression of colorectal cancer through a YAP‐dependent mechanism. Cancer Sci. 2021;112:4087–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weng H, Huang F, Yu Z, Chen Z, Prince E, Kang Y, et al. The m6A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell. 2022;40:1566–1582.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim H, Ronai ZA. PRMT5 function and targeting in cancer. CST. 2020;4:199–215.

    Article  CAS  Google Scholar 

  14. Kim H, Kim H, Feng Y, Li Y, Tamiya H, Tocci S, et al. PRMT5 control of cGAS/STING and NLRC5 pathways defines melanoma response to antitumor immunity. Sci Transl Med. 2020. https://doi.org/10.1126/scitranslmed.aaz5683.

  15. Beketova E, Owens JL, Asberry AM, Hu CD. PRMT5: a putative oncogene and therapeutic target in prostate cancer. Cancer Gene Ther. 2021;29:264–76.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu Y, Wang Z, Han L, Guo Z, Yan B, Guo L, et al. PRMT5 regulates RNA m6A demethylation for doxorubicin sensitivity in breast cancer. Mol Ther. 2022;30:2603–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang L, Zhang X-O, Rozen EJ, Sun X, Sallis B, Verdejo-Torres O, et al. PRMT5 activates AKT via methylation to promote tumor metastasis. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-31645-1.

  18. Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J Exp Med. 2020. https://doi.org/10.1084/jem.20201606.

  19. Cao Y. Adipocyte and lipid metabolism in cancer drug resistance. J Clin Investig. 2019;129:3006–17.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang Z, Wang Y, Li Z, Xue W, Hu S, Kong X. Lipid metabolism as a target for cancer drug resistance: progress and prospects. Front Pharmacol. 2023. https://doi.org/10.3389/fphar.2023.1274335.

  21. Zhang Y, Yang Z, Liu Y, Pei J, Li R, Yang Y. Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment. Lipids Health Dis. 2025. https://doi.org/10.1186/s12944-024-02426-0.

  22. Yang T, Luo Y, Liu J, Liu F, Ma Z, Liu G, et al. A novel signature incorporating lipid metabolism- and immune-related genes to predict the prognosis and immune landscape in hepatocellular carcinoma. Front Oncol. 2023. https://doi.org/10.3389/fonc.2023.1182434.

  23. Zhang J, Yang K, Bu J, Yan J, Hu X, Liu K, et al. IGF2BP3 promotes progression of gallbladder carcinoma by stabilizing KLK5 mRNA in N6-methyladenosine-dependent binding. Front Oncol. 2022. https://doi.org/10.3389/fonc.2022.1035871.

  24. Keefe F, Monzón-Sandoval J, Rosser AE, Webber C, Li M. Single-cell transcriptomics reveals conserved regulatory networks in human and mouse interneuron development. IJMS. 2023;24:8122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng H, Liu H, Ge Y, Wang X. Integrated single-cell and bulk RNA sequencing analysis identifies a cancer associated fibroblast-related signature for predicting prognosis and therapeutic responses in colorectal cancer. Cancer Cell Int. 2021. https://doi.org/10.1186/s12935-021-02252-9.

  26. Yan T, Qiu W, Weng H, Fan Y, Zhou G, Yang Z. Single-cell transcriptomic analysis of ecosystems in papillary thyroid carcinoma progression. Front Endocrinol. 2021. https://doi.org/10.3389/fendo.2021.729565.

  27. Zhang M, Yang H, Wan L, Wang Z, Wang H, Ge C, et al. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J Hepatol. 2020;73:1118–30.

    Article  CAS  PubMed  Google Scholar 

  28. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Arunachalam D, Ramanathan SM, Menon A, Madhav L, Ramaswamy G, Namperumalsamy VP, et al. Expression of immune response genes in human corneal epithelial cells interacting with Aspergillus flavus conidia. BMC Genom. 2022. https://doi.org/10.1186/s12864-021-08218-5.

  30. Linkner TR, Ambrus V, Kunkli B, Szojka ZI, Kalló G, Csősz É, et al. Cellular proteo-transcriptomic changes in the immediate early-phase of lentiviral transduction. Microorganisms. 2021;9:2207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deng YJ, Ren EH, Yuan WH, Zhang GZ, Wu ZL, Xie QQ. GRB10 and E2F3 as diagnostic markers of osteoarthritis and their correlation with immune infiltration. Diagnostics. 2020;10:171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng X, Wang Y, Hu H, Zhang X, Li Q. Identification of the molecular subgroups in coronary artery disease by gene expression profiles. J Cell Physiol. 2019;234:16540–8.

    Article  CAS  PubMed  Google Scholar 

  33. Gao X, Guo Z, Wang P, Liu Z, Wang Z. Transcriptomic analysis reveals the potential crosstalk genes and immune relationship between IgA nephropathy and periodontitis. Front Immunol. 2023. https://doi.org/10.3389/fimmu.2023.1062590.

  34. Tremblay BL, Guénard F, Lamarche B, Pérusse L, Vohl MC. Network analysis of the potential role of DNA methylation in the relationship between plasma carotenoids and lipid profile. Nutrients. 2019;11:1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dai F, Wu J, Deng Z, Li H, Tan W, Yuan M, et al. Integrated bioinformatic analysis of DNA methylation and immune infiltration in endometrial cancer. BioMed Res Int. 2022. https://doi.org/10.1155/2022/5119411.

  36. Wang C, Zhang X, Chen R, Zhu X, Lian N. EGR1 mediates METTL3/m6A/CHI3L1 to promote osteoclastogenesis in osteoporosis. Genomics. 2023;115:110696.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Xiao G, He S, Liu X, Zhu L, Yang X, et al. Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization. Biomed Pharmacother. 2020;125:109945.

    Article  CAS  PubMed  Google Scholar 

  38. Shin H, Choi H, So D, Kim Y, Cho K, Chung H, et al. ITF2 prevents activation of the β-catenin–TCF4 complex in colon cancer cells and levels decrease with tumor progression. Gastroenterology. 2014;147:430–442.e8.

    Article  CAS  PubMed  Google Scholar 

  39. Wei C-Y, Zhu M-X, Lu N-H, Liu J-Q, Yang Y-W, Zhang Y, et al. Circular RNA circ_0020710 drives tumor progression and immune evasion by regulating the miR-370-3p/CXCL12 axis in melanoma. Mol Cancer. 2020. https://doi.org/10.1186/s12943-020-01191-9.

  40. Liu B, Lin J, Bai L, Zhou Y, Lu R, Zhang P, et al. Paeoniflorin inhibits mesangial cell proliferation and inflammatory response in rats with mesangial proliferative glomerulonephritis through PI3K/AKT/GSK-3β pathway. Front Pharmacol. 2019. https://doi.org/10.3389/fphar.2019.00978.

  41. Li S, Mai H, Zhu Y, Li G, Sun J, Li G, et al. MicroRNA-4500 inhibits migration, invasion, and angiogenesis of breast cancer cells via RRM2-dependent MAPK signaling pathway. Mol Ther Nucleic Acids. 2020;21:278–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, et al. ALKBH5 drives immune suppression via targeting AXIN2 to promote colorectal cancer and is a target for boosting immunotherapy. Gastroenterology. 2023;165:445–62.

    Article  CAS  PubMed  Google Scholar 

  43. Zhai L, Tai W-L, Pan Y-Q, Luo J-B, Ma L, Zheng Y-T, et al. Expression of EZH2 and P53 and their correlation in ovarian cancer tissues. Int J Clin Exp Pathol. 2020;13:456–64.

    PubMed  PubMed Central  Google Scholar 

  44. Wang Z, Liu F, Ye S, Jiang P, Yu X, Xu J, et al. Plasma proteome profiling of high-altitude polycythemia using TMT-based quantitative proteomics approach. J Proteom. 2019;194:60–69.

    Article  CAS  Google Scholar 

  45. Guo H, Guo H, Zhang L, Fan Y, Fan Y, Tang Z, et al. Dynamic TMT-based quantitative proteomics analysis of critical initiation process of totipotency during cotton somatic embryogenesis transdifferentiation. IJMS. 2019;20:1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng Y, Gao Z, Zhang T, Wang Y, Xie X, Han G, et al. Decoding m6A RNA methylome identifies PRMT6-regulated lipid transport promoting AML stem cell maintenance. Cell Stem Cell. 2023;30:69–85.e7.

    Article  CAS  PubMed  Google Scholar 

  47. Yang Z, Wang T, Wu D, Min Z, Tan J, Yu B. RNA N6-methyladenosine reader IGF2BP3 regulates cell cycle and angiogenesis in colon cancer. J Exp Clin Cancer Res. 2020. https://doi.org/10.1186/s13046-020-01714-8.

  48. Zhao S, Cheng L, Shi Y, Li J, Yun Q, Yang H. MIEF2 reprograms lipid metabolism to drive progression of ovarian cancer through ROS/AKT/mTOR signaling pathway. Cell Death Dis. 2021. https://doi.org/10.1038/s41419-020-03336-6.

  49. Zhang Y, Xu J, Qiu Z, Guan Y, Zhang X, Zhang X, et al. STK25 enhances hepatocellular carcinoma progression through the STRN/AMPK/ACC1 pathway. Cancer Cell Int. 2022. https://doi.org/10.1186/s12935-021-02421-w.

  50. Zhang Q-F, Li J, Jiang K, Wang R, Ge J, Yang H, et al. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner. Theranostics. 2020;10:10619–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu L, Yan H, Ruan M, Yang H, Wang L, Lei B, et al. An AKT/PRMT5/SREBP1 axis in lung adenocarcinoma regulates de novo lipogenesis and tumor growth. Cancer Sci. 2021;112:3083–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yuan H, Zhao M, Zhao L, Yun H, Yang G, Geng Y, et al. PRMT5 confers lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours. Acta Pharm Sin. 2022;43:2373–85.

    Article  CAS  Google Scholar 

  53. Luo D, Xiao H, Dong J, Li Y, Feng G, Cui M, et al. B7-H3 regulates lipid metabolism of lung cancer through SREBP1-mediated expression of FASN. Biochem Biophys Res Commun. 2017;482:1246–51.

    Article  CAS  PubMed  Google Scholar 

  54. Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 2020;117:31189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shen H, He M, Lin R, Zhan M, Xu S, Huang X, et al. PLEK2 promotes gallbladder cancer invasion and metastasis through EGFR/CCL2 pathway. J Exp Clin Cancer Res. 2019. https://doi.org/10.1186/s13046-019-1250-8.

  56. Hu Y, Jin Y, Wu X, Yang Y, Li Y, Li H, et al. LncRNA-HGBC stabilized by HuR promotes gallbladder cancer progression by regulating miR-502-3p/SET/AKT axis. Mol Cancer. 2019. https://doi.org/10.1186/s12943-019-1097-9.

  57. Baichan P, Naicker P, Devar JWS, Smith M, Candy GP, Nweke E. Targeting gallbladder cancer: a pathway based perspective. Mol Biol Rep. 2020;47:2361–9.

    Article  CAS  PubMed  Google Scholar 

  58. Li Y, Song Y, Zhang Y, Liu S. Progress in gallbladder cancer with lymph node metastasis. Front Oncol. 2022. https://doi.org/10.3389/fonc.2022.966835.

  59. Chen X, Wang D, Liu J, Qiu J, Zhou J, Ying J, et al. Genomic alterations in biliary tract cancer predict prognosis and immunotherapy outcomes. J Immunother Cancer. 2021;9:e003214.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yang G, Xu Q, Wan Y, Zhang L, Wang Z, Meng F. miR-193a-3p enhanced the chemosensitivity to trametinib in gallbladder carcinoma by targeting KRAS and downregulating ERK signaling. Cancer Biother Radiopharm. 2023;38:371–9.

    CAS  PubMed  Google Scholar 

  61. Ma Q, Zhang Y, Liang H, Zhang F, Liu F, Chen S, et al. EMP3 as a key downstream target of miR-663a regulation interferes with MAPK/ERK signaling pathway to inhibit gallbladder cancer progression. Cancer Lett. 2023;575:216398.

    Article  CAS  PubMed  Google Scholar 

  62. Ai Y, Liu S, Luo H, Wu S, Wei H, Tang Z, et al. METTL3 intensifies the progress of oral squamous cell carcinoma via modulating the m6A amount of PRMT5 and PD-L1. J Immunol Res. 2021;2021:1–15.

    Google Scholar 

  63. Zhang X, Wu J, Wu C, Chen W, Lin R, Zhou Y, et al. The LINC01138 interacts with PRMT5 to promote SREBP1-mediated lipid desaturation and cell growth in clear cell renal cell carcinoma. Biochem Biophys Res Commun. 2018;507:337–42.

    Article  CAS  PubMed  Google Scholar 

  64. Liu X, He H, Zhang F, Hu X, Bi F, Li K, et al. m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis. 2022. https://doi.org/10.1038/s41419-022-04950-2.

  65. Chen J, Ye M, Bai J, Gong Z, Yan L, Gu D, et al. ALKBH5 enhances lipid metabolism reprogramming by increasing stability of FABP5 to promote pancreatic neuroendocrine neoplasms progression in an m6A-IGF2BP2-dependent manner. J Transl Med. 2023. https://doi.org/10.1186/s12967-023-04578-6.

  66. Wang Y, Zeng X, Wang N, Zhao W, Zhang X, Teng S, et al. Long noncoding RNA DANCR, working as a competitive endogenous RNA, promotes ROCK1-mediated proliferation and metastasis via decoying of miR-335-5p and miR-1972 in osteosarcoma. Mol Cancer. 2018. https://doi.org/10.1186/s12943-018-0837-6.

  67. Cao X, Yang Y, Zhou W, Wang Y, Wang X, Ge X, et al. Aprepitant inhibits the development and metastasis of gallbladder cancer via ROS and MAPK activation. BMC Cancer. 2023. https://doi.org/10.1186/s12885-023-10954-8.

  68. Buchegger K, Silva R, López J, Ili C, Araya JC, Leal P, et al. The ERK/MAPK pathway is overexpressed and activated in gallbladder cancer. Pathol Res Pract. 2017;213:476–82.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang S, Ma Y, Hu X, Zheng Y, Chen X. Targeting PRMT5/Akt signalling axis prevents human lung cancer cell growth. J Cell Mol Med. 2018;23:1333–42.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Key Research and Development Project of Sichuan Province (2023YFS0171).

Author information

Authors and Affiliations

Authors

Contributions

XY and LS contributed equally to this work and were responsible for study design, data acquisition, and manuscript drafting. JG, YZ, and TR performed bioinformatics analyses, including single-cell transcriptomics and high-throughput sequencing data interpretation. YL and LZ conducted functional assays and mechanistic studies to elucidate the role of the IGF2BP2-PRMT5 axis in gallbladder cancer progression. JM supervised the study, provided critical revisions, and finalised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ji Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical statement

All methods in this study were performed in accordance with the relevant guidelines and regulations. All animal experiments were approved by the Animal Ethics Committee of West China Hospital, Sichuan University (Approval No. 20240103003). Human sample collection and related procedures were approved by the Ethics Committee of West China Hospital, Sichuan University (Approval No. 2023699), and informed consent was obtained from all participants prior to inclusion in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Sun, L., Guo, J. et al. Deciphering the role of IGF2BP2 and PRMT5 in gallbladder cancer progression: insights from multi-omics analysis. Br J Cancer (2025). https://doi.org/10.1038/s41416-025-03062-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-025-03062-w

Search

Quick links