Abstract
Immunotherapy has become an indispensable modality in the treatment of cancer, yet challenges such as resistance and substantial variability in therapeutic responses among patients remain significant obstacles. Key technologies, including spatial omics, have emerged as critical methods for exploring the complex tumor microenvironment. Increasing evidence suggests that, compared to single-cell sequencing, spatial omics technologies offer the advantage of preserving spatial context and integrating multimodal analyses, thereby advancing our understanding of complex interactions within biological tissues. In this perspective article, we present a comprehensive overview of the origins, classifications, and characteristics of various modalities of spatial omics analyses. Furthermore, we discuss the heterogeneity of the TME in the spatial context, such as the phenotypic differences between B cells and T cells near normal versus tumorous tissues—where they predominantly express immune-suppressive receptors in proximity to the tumor. Additionally, we summarize the applications of spatial omics in different cancer therapies, recent advancements in exploring cellular interactions and tertiary lymphoid structures, and the challenges faced in clinical translation. In light of these findings, we advocate for a broader application of spatial omics, combined with other technologies, as this will unveil overlooked therapeutic targets and could potentially realize precision immunotherapy for cancer.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 24 print issues and online access
269,00 € per year
only 11,21 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Zhang L, Shao J, Liu Z, Pan J, Li B, Yang Y, et al. Correction to: occurrence and prognostic value of perineural invasion in esophageal squamous cell cancer: a retrospective study. Ann Surg Oncol. 2021;28:897.
Attili I, Passaro A, de Marinis F. Anti-TIGIT to overcome resistance to immune checkpoint inhibitors in lung cancer: limits and potentials. Ann Oncol. 2022;33:119–22.
Hu Y, Zhang M, Yang T, Mo Z, Wei G, Jing R, et al. Sequential CD7 CAR T-cell therapy and allogeneic HSCT without GVHD prophylaxis. N Engl J Med. 2024;390:1467–80.
Mailankody S, Devlin SM, Landa J, Nath K, Diamonte C, Carstens EJ, et al. GPRC5D-targeted CAR T cells for myeloma. N Engl J Med. 2022;387:1196–206.
Awad MM, Govindan R, Balogh KN, Spigel DR, Garon EB, Bushway ME, et al. Personalized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line treatment for non-squamous non-small cell lung cancer. Cancer Cell. 2022;40:1010–26.e11.
Dooling LJ, Andrechak JC, Hayes BH, Kadu S, Zhang W, Pan R, et al. Cooperative phagocytosis of solid tumours by macrophages triggers durable anti-tumour responses. Nat Biomed Eng. 2023;7:1081–96.
Dacek MM, Kurtz KG, Wallisch P, Pierre SA, Khayat S, Bourne CM, et al. Potentiating antibody-dependent killing of cancers with CAR T cells secreting CD47-SIRPα checkpoint blocker. Blood. 2023;141:2003–15.
Reina-Campos M, Heeg M, Kennewick K, Mathews IT, Galletti G, Luna V, et al. Metabolic programs of T cell tissue residency empower tumour immunity. Nature. 2023;621:179–87.
Qi C, Gong J, Li J, Liu D, Qin Y, Ge S, et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med. 2022;28:1189–98.
Dimitri A, Herbst F, Fraietta JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer. 2022;21:78.
Vignali PDA, DePeaux K, Watson MJ, Ye C, Ford BR, Lontos K, et al. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. Nat Immunol. 2023;24:267–79.
Zhu J, Naulaerts S, Boudhan L, Martin M, Gatto L, Van den Eynde BJ. Tumour immune rejection triggered by activation of α2-adrenergic receptors. Nature. 2023;618:607–15.
Sun D, Liu J, Zhou H, Shi M, Sun J, Zhao S, et al. Classification of tumor immune microenvironment according to Programmed Death-Ligand 1 expression and immune infiltration predicts response to immunotherapy plus chemotherapy in advanced patients with NSCLC. J Thorac Oncol. 2023;18:869–81.
Koti M, Robert Siemens D. A step closer to predicting progression after Bacillus Calmette-Guérin immunotherapy in high-risk non-muscle-invasive bladder cancer. Eur Urol. 2023;84:447–48.
Wang S, Zhang L, Jin Z, Wang Y, Zhang B, Zhao L. Visualizing temporal dynamics and research trends of macrophage-related diabetes studies between 2000 and 2022: a bibliometric analysis. Front Immunol. 2023;14:1194738.
Scheiner B, Pomej K, Kirstein MM, Hucke F, Finkelmeier F, Waidmann O, et al. Prognosis of patients with hepatocellular carcinoma treated with immunotherapy - development and validation of the CRAFITY score. J Hepatol. 2022;76:353–63.
Yang B, Li X, Zhang W, Fan J, Zhou Y, Li W, et al. Spatial heterogeneity of infiltrating T cells in high-grade serous ovarian cancer revealed by multi-omics analysis. Cell Rep Med. 2022;3:100856.
Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 2022;612:141–47.
Wu VH, Yung BS, Faraji F, Saddawi-Konefka R, Wang Z, Wenzel AT, et al. The GPCR-Gα(s)-PKA signaling axis promotes T cell dysfunction and cancer immunotherapy failure. Nat Immunol. 2023;24:1318–30.
Liu Y, Xun Z, Ma K, Liang S, Li X, Zhou S, et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J Hepatol. 2023;78:770–82.
Zhao P, Zhu J, Ma Y, Zhou X. Modeling zero inflation is not necessary for spatial transcriptomics. Genome Biol. 2022;23:118.
Park HE, Jo SH, Lee RH, Macks CP, Ku T, Park J, et al. Spatial transcriptomics: technical aspects of recent developments and their applications in neuroscience and cancer research. Adv Sci. 2023;10:e2206939.
Robles-Remacho A, Sanchez-Martin RM, Diaz-Mochon JJ. Spatial transcriptomics: emerging technologies in tissue gene expression profiling. Anal Chem. 2023;95:15450–60.
Valihrach L, Zucha D, Abaffy P, Kubista M. A practical guide to spatial transcriptomics. Mol Asp Med. 2024;97:101276.
Kim Y, Cheng W, Cho CS, Hwang Y, Si Y, Park A, et al. Seq-Scope: repurposing Illumina sequencing flow cells for high-resolution spatial transcriptomics. Nat Protoc. 2025;20:643–89.
Cross AR, Gartner L, Hester J, Issa F. Opportunities for high-plex spatial transcriptomics in solid organ transplantation. Transplantation. 2023;107:2464–72.
Yan Y, Luo X. BACT: nonparametric Bayesian cell typing for single-cell spatial transcriptomics data. Brief Bioinform. 2024;26:bbae689.
Dries R, Chen J, Del Rossi N, Khan MM, Sistig A, Yuan GC. Advances in spatial transcriptomic data analysis. Genome Res. 2021;31:1706–18.
Li J, Chen S, Pan X, Yuan Y, Shen HB. Cell clustering for spatial transcriptomics data with graph neural networks. Nat Comput Sci. 2022;2:399–408.
Zhou Z, Zhong Y, Zhang Z, Ren X. Spatial transcriptomics deconvolution at single-cell resolution using Redeconve. Nat Commun. 2023;14:7930.
Luo J, Fu J, Lu Z, Tu J. Deep learning in integrating spatial transcriptomics with other modalities. Brief Bioinform. 2024;26:bbae719.
Zhao Y, Long C, Shang W, Si Z, Liu Z, Feng Z, et al. A composite scaling network of EfficientNet for improving spatial ___domain identification performance. Commun Biol. 2024;7:1567.
Zhong C, Ang KS, Chen J. Interpretable spatially aware dimension reduction of spatial transcriptomics with STAMP. Nat Methods. 2024;21:2072–83.
Liu W, Wang B, Bai Y, Liang X, Xue L, Luo J. SpaGIC: graph-informed clustering in spatial transcriptomics via self-supervised contrastive learning. Brief Bioinform. 2024;25:bbae578.
Wang Y, Liu Z, Ma X. MNMST: topology of cell networks leverages identification of spatial domains from spatial transcriptomics data. Genome Biol. 2024;25:133.
Sun D, Liu Z, Li T, Wu Q, Wang C. STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing. Nucleic Acids Res. 2022;50:e42.
McKellar DW, Mantri M, Hinchman MM, Parker JSL, Sethupathy P, Cosgrove BD, et al. Spatial mapping of the total transcriptome by in situ polyadenylation. Nat Biotechnol. 2023;41:513–20.
Wang Q, Zhu H, Deng L, Xu S, Xie W, Li M, et al. Spatial transcriptomics: biotechnologies, computational tools, and neuroscience applications. Small Methods. 2025;9:e2401107.
Han S, Xu Q, Du Y, Tang C, Cui H, Xia X, et al. Single-cell spatial transcriptomics in cardiovascular development, disease, and medicine. Genes Dis. 2024;11:101163.
Baul S, Tanvir Ahmed K, Jiang Q, Wang G, Li Q, Yong J, et al. Integrating spatial transcriptomics and bulk RNA-seq: predicting gene expression with enhanced resolution through graph attention networks. Brief Bioinform. 2024;25:bbae316.
An J, Lu Y, Chen Y, Chen Y, Zhou Z, Chen J, et al. Spatial transcriptomics in breast cancer: providing insight into tumor heterogeneity and promoting individualized therapy. Front Immunol. 2024;15:1499301.
Du J, Yang YC, An ZJ, Zhang MH, Fu XH, Huang ZF, et al. Advances in spatial transcriptomics and related data analysis strategies. J Transl Med. 2023;21:330.
Wu S, Qiu Y, Cheng X. ConSpaS: a contrastive learning framework for identifying spatial domains by integrating local and global similarities. Brief Bioinform. 2023;24:bbad395.
Giacomello S. A new era for plant science: spatial single-cell transcriptomics. Curr Opin Plant Biol. 2021;60:102041.
Chen TY, You L, Hardillo JAU, Chien MP. Spatial transcriptomic technologies. Cells. 2023;12:2042.
Chen H, Zhang Y, Zhou H, Chen W, Peng J, Feng Y, et al. Routine workflow of spatial proteomics on micro-formalin-fixed paraffin-embedded tissues. Anal Chem. 2023;95:16733–43.
Faktor J, Kote S, Bienkowski M, Hupp TR, Marek-Trzonkowska N. Novel FFPE proteomics method suggests prolactin induced protein as hormone induced cytoskeleton remodeling spatial biomarker. Commun Biol. 2024;7:708.
Griesser E, Wyatt H, Ten Have S, Stierstorfer B, Lenter M, Lamond AI. Quantitative Profiling of the Human Substantia Nigra Proteome from Laser-capture microdissected FFPE tissue. Mol Cell Proteom. 2020;19:839–51.
Dong Z, Jiang W, Wu C, Chen T, Chen J, Ding X, et al. Spatial proteomics of single cells and organelles on tissue slides using filter-aided expansion proteomics. Nat Commun. 2024;15:9378.
Guo G, Papanicolaou M, Demarais NJ, Wang Z, Schey KL, Timpson P, et al. Automated annotation and visualisation of high-resolution spatial proteomic mass spectrometry imaging data using HIT-MAP. Nat Commun. 2021;12:3241.
Conroy LR, Chang JE, Sun Q, Clarke HA, Buoncristiani MD, Young LEA, et al. High-dimensionality reduction clustering of complex carbohydrates to study lung cancer metabolic heterogeneity. Adv Cancer Res. 2022;154:227–51.
Kreutzer L, Weber P, Heider T, Heikenwälder M, Riedl T, Baumeister P, et al. Simultaneous metabolite MALDI-MSI, whole exome and transcriptome analysis from formalin-fixed paraffin-embedded tissue sections. Lab Invest. 2022;102:1400–5.
Chen R, Xu J, Wang B, Ding Y, Abdulla A, Li Y, et al. SpiDe-Sr: blind super-resolution network for precise cell segmentation and clustering in spatial proteomics imaging. Nat Commun. 2024;15:2708.
Hosogane T, Casanova R, Bodenmiller B. DNA-barcoded signal amplification for imaging mass cytometry enables sensitive and highly multiplexed tissue imaging. Nat Methods. 2023;20:1304–9.
Li JR, Shaw V, Lin Y, Wang X, Aminu M, Li Y, et al. The prognostic effect of infiltrating immune cells is shaped by proximal M2 macrophages in lung adenocarcinoma. Mol Cancer. 2024;23:185.
Bao K, Chen X, Chen R, Gao Y, Dang J, He J, et al. Zr-NMOF tagged with heterobifunctionalized aptamers for highly sensitive, multiplexed and rapid imaging mass cytometry. Nanoscale. 2024;16:22283–96.
Mou M, Pan Z, Lu M, Sun H, Wang Y, Luo Y, et al. Application of machine learning in spatial proteomics. J Chem Inf Model. 2022;62:5875–95.
Du Y, Ding X, Ye Y. The spatial multi-omics revolution in cancer therapy: Precision redefined. Cell Rep Med. 2024;5:101740.
Zhang Y, Lee RY, Tan CW, Guo X, Yim WW, Lim JC, et al. Spatial omics techniques and data analysis for cancer immunotherapy applications. Curr Opin Biotechnol. 2024;87:103111.
Christopher JA, Geladaki A, Dawson CS, Vennard OL, Lilley KS. Subcellular transcriptomics and proteomics: a comparative methods review. Mol Cell Proteom. 2022;21:100186.
Lewis SM, Asselin-Labat ML, Nguyen Q, Berthelet J, Tan X, Wimmer VC, et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat Methods. 2021;18:997–1012.
Liu B, Meng X, Li K, Guo J, Cai Z. Visualization of lipids in cottonseeds by matrix-assisted laser desorption/ionization mass spectrometry imaging. Talanta. 2021;221:121614.
Liu P, Chen L, Zhang G, Hu Z, Zhang Y, Zhao Q, et al. Spatial lipidomic profiling reveals distinct lipid distribution patterns in poplar buds during growth and dormancy. Plant Cell Environ. 2025.
Song X, Zang Q, Zare RN. Hydrogen-Deuterium exchange desorption electrospray ionization mass spectrometry visualizes an acidic tumor microenvironment. Anal Chem. 2021;93:10411–17.
Soudah T, Zoabi A, Margulis K. Desorption electrospray ionization mass spectrometry imaging in discovery and development of novel therapies. Mass Spectrom Rev. 2023;42:751–78.
Planque M, Igelmann S, Ferreira Campos AM, Fendt SM. Spatial metabolomics principles and application to cancer research. Curr Opin Chem Biol. 2023;76:102362.
Wang J, Sun N, Kunzke T, Shen J, Zens P, Prade VM, et al. Spatial metabolomics identifies distinct tumor-specific and stroma-specific subtypes in patients with lung squamous cell carcinoma. NPJ Precis Oncol. 2023;7:114.
Zemaitis KJ, Lin VS, Ahkami AH, Winkler TE, Anderton CR, Veličković D. Expanded coverage of phytocompounds by mass spectrometry imaging using on-tissue chemical derivatization by 4-APEBA. Anal Chem. 2023;95:12701–09.
Dreisbach D, Heiles S, Bhandari DR, Petschenka G, Spengler B. Molecular networking and on-tissue chemical derivatization for enhanced identification and visualization of steroid Glycosides by MALDI Mass Spectrometry Imaging. Anal Chem. 2022;94:15971–79.
Mavroudakis L, Golubova A, Lanekoff I. Spatial metabolomics platform combining mass spectrometry imaging and in-depth chemical characterization with capillary electrophoresis. Talanta. 2025;286:127460.
Min X, Zhao Y, Yu M, Zhang W, Jiang X, Guo K, et al. Spatially resolved metabolomics: From metabolite mapping to function visualising. Clin Transl Med. 2024;14:e70031.
Luo L, Ma W, Liang K, Wang Y, Su J, Liu R, et al. Spatial metabolomics reveals skeletal myofiber subtypes. Sci Adv. 2023;9:eadd0455.
Wang G, Heijs B, Kostidis S, Mahfouz A, Rietjens RGJ, Bijkerk R, et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat Metab. 2022;4:1109–18.
Wang F, Ma S, Chen P, Han Y, Liu Z, Wang X, et al. Imaging the metabolic reprograming of fatty acid synthesis pathway enables new diagnostic and therapeutic opportunity for breast cancer. Cancer Cell Int. 2023;23:83.
Källback P, Vallianatou T, Nilsson A, Shariatgorji R, Schintu N, Pereira M, et al. Cross-validated Matrix-Assisted Laser Desorption/Ionization mass spectrometry imaging quantitation protocol for a pharmaceutical drug and its drug-target effects in the brain using time-of-flight and fourier transform ion cyclotron resonance analyzers. Anal Chem. 2020;92:14676–84.
Sun C, Wang F, Zhang Y, Yu J, Wang X. Mass spectrometry imaging-based metabolomics to visualize the spatially resolved reprogramming of carnitine metabolism in breast cancer. Theranostics. 2020;10:7070–82.
Vandenbosch M, Mutuku SM, Mantas MJQ, Patterson NH, Hallmark T, Claesen M, et al. Toward omics-scale quantitative mass spectrometry imaging of lipids in brain tissue using a multiclass internal standard mixture. Anal Chem. 2023;95:18719–30.
Qian Y, Ma X. Advances in Tandem Mass Spectrometry imaging for next-generation spatial metabolomics. Anal Chem. 2025;97:7589–99.
Nguyen K, Carleton G, Lum JJ, Duncan KD. Expanding spatial metabolomics coverage with lithium-doped nanospray desorption electrospray ionization Mass Spectrometry Imaging. Anal Chem. 2024;96:18427–36.
Schwaiger-Haber M, Stancliffe E, Anbukumar DS, Sells B, Yi J, Cho K, et al. Using mass spectrometry imaging to map fluxes quantitatively in the tumor ecosystem. Nat Commun. 2023;14:2876.
MacFawn IP, Magnon G, Gorecki G, Kunning S, Rashid R, Kaiza ME, et al. The activity of tertiary lymphoid structures in high grade serous ovarian cancer is governed by site, stroma, and cellular interactions. Cancer Cell. 2024;42:1864–81.e5.
Jerby-Arnon L, Regev A. DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data. Nat Biotechnol. 2022;40:1467–77.
Anderson AC, Yanai I, Yates LR, Wang L, Swarbrick A, Sorger P, et al. Spatial transcriptomics. Cancer Cell. 2022;40:895–900.
Liang L, Kuang X, He Y, Zhu L, Lau P, Li X, et al. Alterations in PD-L1 succinylation shape anti-tumor immune responses in melanoma. Nat Genet. 2025;57:680–93.
Qiu X, Zhou T, Li S, Wu J, Tang J, Ma G, et al. Spatial single-cell protein landscape reveals vimentin(high) macrophages as immune-suppressive in the microenvironment of hepatocellular carcinoma. Nat Cancer. 2024;5:1557–78.
Wang Y, Fan JL, Melms JC, Amin AD, Georgis Y, Barrera I, et al. Multimodal single-cell and whole-genome sequencing of small, frozen clinical specimens. Nat Genet. 2023;55:19–25.
Jackson C, Cherry C, Bom S, Dykema AG, Wang R, Thompson E, et al. Distinct myeloid-derived suppressor cell populations in human glioblastoma. Science. 2025;387:eabm5214.
Liu C, Nguyen RY, Pizzurro GA, Zhang X, Gong X, Martinez AR, et al. Self-assembly of mesoscale collagen architectures and applications in 3D cell migration. Acta Biomater. 2023;155:167–81.
Croizer H, Mhaidly R, Kieffer Y, Gentric G, Djerroudi L, Leclere R, et al. Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer. Nat Commun. 2024;15:2806.
Zhang R, Feng Y, Ma W, Guo Y, Luo M, Li Y, et al. Spatial transcriptome unveils a discontinuous inflammatory pattern in proficient mismatch repair colorectal adenocarcinoma. Fundam Res. 2023;3:640–46.
Ye QW, Liu YJ, Li JQ, Han M, Bian ZR, Chen TY, et al. GJA4 expressed on cancer associated fibroblasts (CAFs)-A ‘promoter’ of the mesenchymal phenotype. Transl Oncol. 2024;46:102009.
Wang X, Hu LP, Qin WT, Yang Q, Chen DY, Li Q, et al. Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis. Nat Commun. 2021;12:174.
Li Y, Chang RB, Stone ML, Delman D, Markowitz K, Xue Y, et al. Multimodal immune phenotyping reveals microbial-T cell interactions that shape pancreatic cancer. Cell Rep Med. 2024;5:101397.
Musiu C, Adamo A, Caligola S, Agostini A, Frusteri C, Lupo F, et al. Local ablation disrupts immune evasion in pancreatic cancer. Cancer Lett. 2025;609:217327.
Zhang H, Wang M, Xu Y. Understanding the mechanisms underlying obesity in remodeling the breast tumor immune microenvironment: from the perspective of inflammation. Cancer Biol Med. 2023;20:268–86.
Zhu Y, Banerjee A, Xie P, Ivanov AA, Uddin A, Jiao Q, et al. Pharmacological suppression of the OTUD4/CD73 proteolytic axis revives antitumor immunity against immune-suppressive breast cancers. J Clin Invest. 2024;134:e176390.
Mirzaei R, D’Mello C, Liu M, Nikolic A, Kumar M, Visser F, et al. Single-cell spatial analysis identifies regulators of brain tumor-initiating cells. Cancer Res. 2023;83:1725–41.
Ravi VM, Neidert N, Will P, Joseph K, Maier JP, Kückelhaus J, et al. T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat Commun. 2022;13:925.
Walsh LA, Quail DF. Decoding the tumor microenvironment with spatial technologies. Nat Immunol. 2023;24:1982–93.
Sloan L, Sen R, Liu C, Doucet M, Blosser L, Katulis L, et al. Radiation immunodynamics in patients with glioblastoma receiving chemoradiation. Front Immunol. 2024;15:1438044.
Liu X, Chen C, Li J, Li L, Ma M. Identification of tumor-specific T cell signature predicting cancer immunotherapy response in bladder cancer by multi-omics analysis and experimental verification. Cancer Cell Int. 2024;24:255.
Mohr AE, Hatem C, Sikand G, Rozga M, Moloney L, Sullivan J, et al. Effectiveness of medical nutrition therapy in the management of adult dyslipidemia: A systematic review and meta-analysis. J Clin Lipido. 2022;16:547–61.
Zheng X, Mund A, Mann M. Deciphering functional tumor-immune crosstalk through highly multiplexed imaging and deep visual proteomics. Mol Cell. 2025;85:1008–23.e7.
Akiyama T, Yasuda T, Uchihara T, Yasuda-Yoshihara N, Tan BJY, Yonemura A, et al. Stromal reprogramming through dual PDGFRα/β blockade boosts the efficacy of anti-PD-1 immunotherapy in fibrotic tumors. Cancer Res. 2023;83:753–70.
Ma C, Yang C, Peng A, Sun T, Ji X, Mi J, et al. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol Cancer. 2023;22:170.
Hsieh WC, Budiarto BR, Wang YF, Lin CY, Gwo MC, So DK, et al. Spatial multi-omics analyses of the tumor immune microenvironment. J Biomed Sci. 2022;29:96.
Walker CR, Angelo M. Insights and opportunity costs in applying spatial biology to study the tumor microenvironment. Cancer Discov. 2024;14:707–10.
Vadakekolathu J, Rutella S. Escape from T-cell-targeting immunotherapies in acute myeloid leukemia. Blood. 2024;143:2689–700.
Zhang Z, Bao S, Yan C, Hou P, Zhou M, Sun J. Computational principles and practice for decoding immune contexture in the tumor microenvironment. Brief Bioinform. 2021;22:bbaa075.
Li S, Zhang N, Zhang H, Yang Z, Cheng Q, Wei K, et al. Deciphering the role of LGALS2: insights into tertiary lymphoid structure-associated dendritic cell activation and immunotherapeutic potential in breast cancer patients. Mol Cancer. 2024;23:216.
Xun Z, Zhou H, Shen M, Liu Y, Sun C, Du Y, et al. Identification of Hypoxia-ALCAM(high) macrophage- exhausted T cell axis in tumor microenvironment remodeling for immunotherapy resistance. Adv Sci. 2024;11:e2309885.
Sun L, Kienzler JC, Reynoso JG, Lee A, Shiuan E, Li S, et al. Immune checkpoint blockade induces distinct alterations in the microenvironments of primary and metastatic brain tumors. J Clin Invest. 2023;133:e169314.
Tian H, Sparvero LJ, Anthonymuthu TS, Sun WY, Amoscato AA, He RR, et al. successive high-resolution (H(2)O)(n)-GCIB and C(60)-SIMS imaging integrates multi-omics in different cell types in breast cancer tissue. Anal Chem. 2021;93:8143–51.
Surwase SS, Zhou XMM, Luly KM, Zhu Q, Anders RA, Green JJ, et al. Highly multiplexed immunofluorescence phenocycler panel for murine formalin-fixed paraffin-embedded tissues yields insight into tumor microenvironment immunoengineering. Lab Invest. 2025;105:102165.
Lapuente-Santana Ó, Sturm G, Kant J, Ausserhofer M, Zackl C, Zopoglou M, et al. Multimodal analysis unveils tumor microenvironment heterogeneity linked to immune activity and evasion. iScience. 2024;27:110529.
Szalay AS, Taube JM. Data-rich spatial profiling of cancer tissue: astronomy informs pathology. Clin Cancer Res. 2022;28:3417–24.
Houel A, Foloppe J, Dieu-Nosjean MC. Harnessing the power of oncolytic virotherapy and tertiary lymphoid structures to amplify antitumor immune responses in cancer patients. Semin Immunol. 2023;69:101796.
Berthe J, Poudel P, Segerer FJ, Jennings EC, Ng F, Surace M, et al. Exploring the impact of tertiary lymphoid structures maturity in NSCLC: insights from TLS scoring. Front Immunol. 2024;15:1422206.
Schumacher TN, Thommen DS. Tertiary lymphoid structures in cancer. Science. 2022;375:eabf9419.
Zhang Y, Xu M, Ren Y, Ba Y, Liu S, Zuo A, et al. Tertiary lymphoid structural heterogeneity determines tumour immunity and prospects for clinical application. Mol Cancer. 2024;23:75.
Jiang L, Wang P, Hou Y, Chen J, Li H. Comprehensive single-cell pan-cancer atlas unveils IFI30+ macrophages as key modulators of intra-tumoral immune dynamics. Front Immunol. 2025;16:1523854.
Wu J, Koelzer VH. SST-editing: in silico spatial transcriptomic editing at single-cell resolution. Bioinformatics. 2024;40:btae077.
Yao Y, Li B, Wang J, Chen C, Gao W, Li C. A novel HVEM-Fc recombinant protein for lung cancer immunotherapy. J Exp Clin Cancer Res. 2025;44:62.
Cai F, Mao S, Peng S, Wang Z, Li W, Zhang R, et al. A comprehensive pan-cancer examination of transcription factor MAFF: Oncogenic potential, prognostic relevance, and immune landscape dynamics. Int Immunopharmacol. 2025;149:114105.
Zhang S, Deshpande A, Verma BK, Wang H, Mi H, Yuan L, et al. Integration of clinical trial spatial multiomics analysis and virtual clinical trials enables immunotherapy response prediction and biomarker discovery. Cancer Res. 2024;84:2734–48.
Wu Q, Liu Z, Gao Z, Luo Y, Li F, Yang C, et al. KLF5 inhibition potentiates anti-PD1 efficacy by enhancing CD8(+) T-cell-dependent antitumor immunity. Theranostics. 2023;13:1381–400.
Wang Y, Zhou SK, Wang Y, Lu ZD, Zhang Y, Xu CF, et al. Engineering tumor-specific gene nanomedicine to recruit and activate T cells for enhanced immunotherapy. Nat Commun. 2023;14:1993.
Chen W, He Y, Zhou G, Chen X, Ye Y, Zhang G, et al. Multiomics characterization of pyroptosis in the tumor microenvironment and therapeutic relevance in metastatic melanoma. BMC Med. 2024;22:24.
Wang S, Kuai Y, Lin S, Li L, Gu Q, Zhang X, et al. NF-κB Activator 1 downregulation in macrophages activates STAT3 to promote adenoma-adenocarcinoma transition and immunosuppression in colorectal cancer. BMC Med. 2023;21:115.
Hu Y, Jia H, Cui H, Song J. Application of spatial omics in the cardiovascular system. Research. 2025;8:0628.
Wan J, Sun Z, Feng X, Zhou P, Macho MTN, Jiao Z, et al. Spatial omics strategies for investigating human carotid atherosclerotic disease. Clin Transl Med. 2025;15:e70277.
Liu J, Peng X, Yang S, Li X, Huang M, Wei S, et al. Extracellular vesicle PD-L1 in reshaping tumor immune microenvironment: biological function and potential therapy strategies. Cell Commun Signal. 2022;20:14.
Wang R, Hastings WJ, Saliba JG, Bao D, Huang Y, Maity S, et al. Applications of nanotechnology for spatial omics: biological structures and functions at nanoscale resolution. ACS Nano. 2025;19:73–100.
Marconato L, Palla G, Yamauchi KA, Virshup I, Heidari E, Treis T, et al. SpatialData: an open and universal data framework for spatial omics. Nat Methods. 2025;22:58–62.
Tran M, Yoon S, Teoh M, Andersen S, Lam PY, Purdue BW, et al. A robust experimental and computational analysis framework at multiple resolutions, modalities and coverages. Front Immunol. 2022;13:911873.
Jiang H, Gao B, Meng Z, Wang Y, Jiao T, Li J, et al. Integrative multi-omics analysis reveals the role of tumor-associated endothelial cells and their signature in prognosis of intrahepatic cholangiocarcinoma. J Transl Med. 2024;22:948.
Haddad TS, Friedl P, Farahani N, Treanor D, Zlobec I, Nagtegaal I. Tutorial: methods for three-dimensional visualization of archival tissue material. Nat Protoc. 2021;16:4945–62.
Li W, Sun J, Sun R, Wei Y, Zheng J, Zhu Y, et al. Integral-omics: serial extraction and profiling of metabolome, lipidome, genome, transcriptome, whole proteome and phosphoproteome using biopsy tissue. Anal Chem. 2025;97:1190–98.
Decruyenaere P, Verniers K, Poma-Soto F, Van Dorpe J, Offner F, Vandesompele J. RNA extraction method impacts quality metrics and sequencing results in formalin-fixed, paraffin-embedded tissue samples. Lab Invest. 2023;103:100027.
Youssef O, Loukola A, Zidi-Mouaffak YHS, Tamlander M, Ruotsalainen S, Kilpeläinen E, et al. High-resolution genotyping of formalin-fixed tissue accurately estimates polygenic risk scores in human diseases. Lab Invest. 2024;104:100325.
Dube S, Al-Mannai S, Liu L, Tomei S, Hubrack S, Sherif S, et al. Systematic comparison of quantity and quality of RNA recovered with commercial FFPE tissue extraction kits. J Transl Med. 2025;23:11.
Kohale IN, Burgenske DM, Mladek AC, Bakken KK, Kuang J, Boughey JC, et al. Quantitative analysis of Tyrosine Phosphorylation from FFPE tissues reveals patient-specific signaling networks. Cancer Res. 2021;81:3930–41.
Barnabas GD, Goebeler V, Tsui J, Bush JW, Lange PF. ASAP─automated sonication-free acid-assisted proteomes─from cells and FFPE tissues. Anal Chem. 2023;95:3291–99.
Wang FA, Zhuang Z, Gao F, He R, Zhang S, Wang L, et al. TMO-Net: an explainable pretrained multi-omics model for multi-task learning in oncology. Genome Biol. 2024;25:149.
Verheijen M, Sarkans U, Wolski W, Jennen D, Caiment F, Kleinjans J. Multi-omics HeCaToS dataset of repeated dose toxicity for cardiotoxic & hepatotoxic compounds. Sci Data. 2022;9:699.
Lita A, Sjöberg J, Păcioianu D, Siminea N, Celiku O, Dowdy T, et al. Raman-based machine-learning platform reveals unique metabolic differences between IDHmut and IDHwt glioma. Neuro Oncol. 2024;26:1994–2009.
Wang H, Li J, Jing S, Lin P, Qiu Y, Yan X, et al. SOAPy: a Python package to dissect spatial architecture, dynamics, and communication. Genome Biol. 2025;26:80.
Zhao Z, Jiang M, He C, Yin W, Feng Y, Wang P, et al. Enhancing specific fluorescence in situ hybridization with quantum dots for single-molecule RNA imaging in formalin-fixed paraffin-embedded tumor tissues. ACS Nano. 2024;18:9958–68.
Jiang W, Zhang X, Xu Z, Cheng Q, Li X, Zhu Y, et al. High-throughput single-nucleus RNA profiling of minimal puncture FFPE samples reveals spatiotemporal heterogeneity of cancer. Adv Sci. 2025;12:e2410713.
Good CJ, Neumann EK, Butrico CE, Cassat JE, Caprioli RM, Spraggins JM. High spatial resolution MALDI Imaging Mass Spectrometry of fresh-frozen bone. Anal Chem. 2022;94:3165–72.
Wu X, Xu W, Deng L, Li Y, Wang Z, Sun L, et al. Spatial multi-omics at subcellular resolution via high-throughput in situ pairwise sequencing. Nat Biomed Eng. 2024;8:872–89.
Fu Y, Tao J, Gu Y, Liu Y, Qiu J, Su D, et al. Multiomics integration reveals NETosis heterogeneity and TLR2 as a prognostic biomarker in pancreatic cancer. NPJ Precis Oncol. 2024;8:109.
Yu L, Wang X, Mu Q, Tam SST, Loi DSC, Chan AKY, et al. scONE-seq: A single-cell multi-omics method enables simultaneous dissection of phenotype and genotype heterogeneity from frozen tumors. Sci Adv. 2023;9:eabp8901.
Xie B, Gao D, Zhou B, Chen S, Wang L. New discoveries in the field of metabolism by applying single-cell and spatial omics. J Pharm Anal. 2023;13:711–25.
Huo Y, Liu K, Lou X. Strong additive and synergistic effects of polyoxyethylene nonionic surfactant-assisted protein MALDI imaging mass spectrometry. Talanta. 2021;222:121524.
Lin J, Lin H, Li C, Liao N, Zheng Y, Yu X, et al. Unveiling characteristic metabolic accumulation over enzymatic-catalyzed process of Tieguanyin oolong tea manufacturing by DESI-MSI and multiple-omics. Food Res Int. 2024;181:114136.
Kataoka K, Mori K, Nakamura Y, Watanabe J, Akazawa N, Hirata K, et al. Survival benefit of adjuvant chemotherapy based on molecular residual disease detection in resected colorectal liver metastases: subgroup analysis from CIRCULATE-Japan GALAXY. Ann Oncol. 2024;35:1015–25.
Fu L, Zhou X, Zhang X, Li X, Zhang F, Gu H, et al. Circulating tumor DNA in lymphoma: technologies and applications. J Hematol Oncol. 2025;18:29.
Coakley M, Villacampa G, Sritharan P, Swift C, Dunne K, Kilburn L, et al. Comparison of circulating tumor DNA assays for molecular residual disease detection in early-stage triple-negative breast cancer. Clin Cancer Res. 2024;30:895–903.
Tanaka I, Furukawa T, Morise M. The current issues and future perspective of artificial intelligence for developing new treatment strategy in non-small cell lung cancer: harmonization of molecular cancer biology and artificial intelligence. Cancer Cell Int. 2021;21:454.
Acknowledgements
Not applicable.
Funding
This study was supported by Henan Youth and Middle-aged Health Science and Technology Innovation Leaders Training Project (NO. YXKC2022004). Henan Health Young and Middle-aged discipline Leader Project (NO. HNSWJW-2022011). Henan Medical Science and Technology Tackling Programme of Provincial-Ministry Joint Major Project (No. SBGJ202401004). Key Research and Development Projects of Henan Province (NO. 251111310100).
Author information
Authors and Affiliations
Contributions
Z.l. finished the manuscript and figures.Y.Y., L.L., C.W. collected the related paper. Y.L., Q.W. and Z.S. gave constructive guidance and made critical revisions.
Corresponding authors
Ethics declarations
Competing interests
All authors declare no conflict of interest.
Consent for publication
All authors have approved to publish this manuscript.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lan, Z., Yang, Y., Li, L. et al. Spatial omics technology potentially promotes the progress of tumor immunotherapy. Br J Cancer (2025). https://doi.org/10.1038/s41416-025-03075-5
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41416-025-03075-5