Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Spliceosomal GTPase EFTUD2 mediates DDX41 intron retention to promote the malignant progression of ovarian cancer

Abstract

Background

Dysregulation of alternative splicing (AS) has been identified as a promising target for cancer therapy. Nevertheless, the precise molecular mechanisms by which AS influences ovarian cancer (OC) progression have not yet been fully elucidated.

Methods

A comprehensive bioinformatics analysis was conducted to identify and screen core splicing factors in OC. The splicing factor EFTUD2 was found to be significantly overexpressed in clinical OC samples. Subsequent in vitro and in vivo assays elucidated the oncogenic role of EFTUD2 in OC. RNA-seq and AS events analysis were employed to determine the key downstream target regulated by EFTUD2. ASOs targeting EFTUD2 were developed for efficacy validation.

Results

EFTUD2 was identified as a critical splicing factor in the pathogenesis of OC, and EFTUD2 knockdown impeded OC tumorigenesis and progression. The EFTUD2-ASO significantly inhibited tumor growth in vivo. Mechanistically, EFTUD2 was shown to promote the malignant biological behavior of OC by facilitating the efficient splicing of DDX41 and maintaining the oncogenic expression of its functional proteins. Knockdown of DDX41 partially mitigated the EFTUD2-induced malignant progression of OC cells.

Conclusions

Our findings suggest that the EFTUD2/DDX41 axis is a viable target for OC. ASO-mediated silencing of EFTUD2 presents promising new therapeutic options for OC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EFTUD2 expression is upregulated in OC.
Fig. 2: Silencing EFTUD2 reduces proliferation, migration, and invasion of OC cells both in vitro and in vivo.
Fig. 3: ASO-mediated EFTUD2 knockdown inhibits the malignant behaviors of OC cells in vitro and in vivo.
Fig. 4: DDX41 is a critical downstream target of EFTUD2 based on RNA-seq analysis.
Fig. 5: EFTUD2 maintains efficient splicing of DDX41 intron 6 in OC cells.
Fig. 6: DDX41 inhibition suppresses the growth and decreases the metastatic potential of OC cells in vitro.
Fig. 7: DDX41 knockdown attenuates the malignant phenotype of EFTUD2- overexpressing OC cells.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Nasiri F, Farrokhi K, Safarzadeh Kozani P, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. CAR-T cell immunotherapy for ovarian cancer: hushing the silent killer. Front Immunol. 2023;14:1302307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wei L, Li Y, Chen J, Wang Y, Wu J, Yang H, et al. Alternative splicing in ovarian cancer. Cell Commun Signal. 2024;22:507.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Armstrong DK, Alvarez RD, Backes FJ, Bakkum-Gamez JN, Barroilhet L, Behbakht K, et al. NCCN Guidelines® Insights: Ovarian Cancer, Version 3.2022. J Natl Compr Canc Netw. 2022;20:972–80.

    Article  PubMed  Google Scholar 

  4. Armstrong DK, Alvarez RD, Bakkum-Gamez JN, Barroilhet L, Behbakht K, Berchuck A, et al. Ovarian Cancer, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2021;19:191–226.

    Article  CAS  PubMed  Google Scholar 

  5. Menon U, Gentry-Maharaj A, Burnell M, Ryan A, Singh N, Manchanda R, et al. Tumour stage, treatment, and survival of women with high-grade serous tubo-ovarian cancer in UKCTOCS: an exploratory analysis of a randomised controlled trial. Lancet Oncol. 2023;24:1018–28.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang M, Cheng S, Jin Y, Zhao Y, Wang Y. Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer. Biochim Biophys Acta Rev Cancer. 2021;1875:188503.

    Article  CAS  PubMed  Google Scholar 

  7. Kuroki L, Guntupalli SR. Treatment of epithelial ovarian cancer. Bmj. 2020;371:m3773.

    Article  PubMed  Google Scholar 

  8. Webb PM, Jordan SJ. Global epidemiology of epithelial ovarian cancer. Nat Rev Clin Oncol. 2024;21:389–400.

    Article  PubMed  Google Scholar 

  9. Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian cancer therapy. Nat Cancer. 2023;4:1239–57.

    Article  PubMed  Google Scholar 

  10. Bradley RK, Anczuków O. RNA splicing dysregulation and the hallmarks of cancer. Nat Rev Cancer. 2023;23:135–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell. 2018;34:211–24.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu N, Ren Y, Bao Y, Shen X, Kang J, Wang N, et al. PUF60 promotes cell cycle and lung cancer progression by regulating alternative splicing of CDC25C. Cell Rep. 2023;42:113041.

    Article  CAS  PubMed  Google Scholar 

  13. Wan L, Lin KT, Rahman MA, Ishigami Y, Wang Z, Jensen MA, et al. Splicing Factor SRSF1 Promotes Pancreatitis and KRASG12D-Mediated Pancreatic Cancer. Cancer Discov. 2023;13:1678–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deng L, Liao L, Zhang YL, Yang SY, Hu SY, Andriani L, et al. SF3A2 promotes progression and cisplatin resistance in triple-negative breast cancer via alternative splicing of MKRN1. Sci Adv. 2024;10:eadj4009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Z, Wang S, Qin J, Zhang X, Lu G, Liu H, et al. Splicing factor BUD31 promotes ovarian cancer progression through sustaining the expression of anti-apoptotic BCL2L12. Nat Commun. 2022;13:6246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Chen Z, Peng J, Yuan C, Yan S, Yang N, et al. The splicing factor SNRPB promotes ovarian cancer progression through regulating aberrant exon skipping of POLA1 and BRCA2. Oncogene. 2023;42:2386–401.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu X, Li C, Gao Y, Zhang Q, Wang T, Zhou H, et al. The feedback loop of EFTUD2/c-MYC impedes chemotherapeutic efficacy by enhancing EFTUD2 transcription and stabilizing c-MYC protein in colorectal cancer. J Exp Clin Cancer Res. 2024;43:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tu M, He L, You Y, Li J, Yao N, Qu C, et al. EFTUD2 maintains the survival of tumor cells and promotes hepatocellular carcinoma progression via the activation of STAT3. Cell Death Dis. 2020;11:830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lv C, Li XJ, Hao LX, Zhang S, Song Z, Ji XD, et al. Over-activation of EFTUD2 correlates with tumor propagation and poor survival outcomes in hepatocellular carcinoma. Clin Transl Oncol. 2022;24:93–103.

    Article  CAS  PubMed  Google Scholar 

  20. Sato N, Maeda M, Sugiyama M, Ito S, Hyodo T, Masuda A, et al. Inhibition of SNW1 association with spliceosomal proteins promotes apoptosis in breast cancer cells. Cancer Med. 2015;4:268–77.

    Article  CAS  PubMed  Google Scholar 

  21. Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med. 2015;7:314ra185.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wei Y, Chen Z, Li Y, Song K. The splicing factor WBP11 mediates MCM7 intron retention to promote the malignant progression of ovarian cancer. Oncogene. 2024;43:1565–78.

    Article  CAS  PubMed  Google Scholar 

  23. Yang G, Yang Y, Song Z, Chen L, Liu F, Li Y, et al. Spliceosomal GTPase Eftud2 deficiency-triggered ferroptosis leads to Purkinje cell degeneration. Neuron. 2024;112:3452–69.e9.

    Article  CAS  PubMed  Google Scholar 

  24. Dvinge H, Bradley RK. Widespread intron retention diversifies most cancer transcriptomes. Genome Med. 2015;7:45.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Arna AB, Patel H, Singh RS, Vizeacoumar FS, Kusalik A, Freywald A, et al. Synthetic lethal interactions of DEAD/H-box helicases as targets for cancer therapy. Front Oncol. 2022;12:1087989.

    Article  CAS  PubMed  Google Scholar 

  26. Beyer S, Müller L, Mitter S, Keilmann L, Meister S, Buschmann C, et al. High RIG-I and EFTUD2 expression predicts poor survival in endometrial cancer. J Cancer Res Clin Oncol. 2023;149:4293–303.

    Article  CAS  PubMed  Google Scholar 

  27. Ramasamy T, Ruttala HB, Munusamy S, Chakraborty N, Kim JO. Nano drug delivery systems for antisense oligonucleotides (ASO) therapeutics. J Control Release. 2022;352:861–78.

    Article  CAS  PubMed  Google Scholar 

  28. Kim Y. Drug discovery perspectives of antisense oligonucleotides. Biomol Ther (Seoul). 2023;31:241–52.

    Article  CAS  PubMed  Google Scholar 

  29. Kim Y, Jo M, Schmidt J, Luo X, Prakash TP, Zhou T, et al. Enhanced potency of GalNAc-conjugated antisense oligonucleotides in hepatocellular cancer models. Mol Ther. 2019;27:1547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wan L, Dreyfuss G. Splicing-Correcting Therapy for SMA. Cell. 2017;170:5.

    Article  CAS  PubMed  Google Scholar 

  31. Ma WK, Voss DM, Scharner J, Costa ASH, Lin KT, Jeon HY, et al. ASO-based PKM splice-switching therapy inhibits hepatocellular carcinoma growth. Cancer Res. 2022;82:900–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reilley MJ, McCoon P, Cook C, Lyne P, Kurzrock R, Kim Y, et al. STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trial. J Immunother Cancer. 2018;6:119.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol. 2023;24:749–69.

    Article  CAS  PubMed  Google Scholar 

  34. Moriyama M, Koshiba T, Ichinohe T. Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat Commun. 2019;10:4624.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cheloor Kovilakam S, Gu M, Dunn WG, Marando L, Barcena C, Nik-Zainal S, et al. Prevalence and significance of DDX41 gene variants in the general population. Blood. 2023;142:1185–92.

    Article  CAS  PubMed  Google Scholar 

  36. Makishima H, Bowman TV, Godley LA. DDX41-associated susceptibility to myeloid neoplasms. Blood. 2023;141:1544–52.

    Article  CAS  PubMed  Google Scholar 

  37. Yang F, Long N, Anekpuritanang T, Bottomly D, Savage JC, Lee T, et al. Identification and prioritization of myeloid malignancy germline variants in a large cohort of adult patients with AML. Blood. 2022;139:1208–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qi Z, Yan F, Chen D, Xing W, Li Q, Zeng W, et al. Identification of prognostic biomarkers and correlations with immune infiltrates among cGAS-STING in hepatocellular carcinoma. Biosci Rep. 2020;40:BSR20202603.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kobatake K, Ikeda K, Nakata Y, Yamasaki N, Kanai A, Sekino Y, et al. DDX41 expression is associated with tumor necrosis in clear cell renal cell carcinoma and in cooperation with VHL loss leads to worse prognosis. Urol Oncol. 2022;40:456.e9–456.e18.

    Article  CAS  PubMed  Google Scholar 

  40. An J, Luo Z, An W, Cao D, Ma J, Liu Z. Identification of spliceosome components pivotal to breast cancer survival. RNA Biol. 2021;18:833–42.

    Article  CAS  PubMed  Google Scholar 

  41. Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, Hosono N, et al. Inherited and Somatic Defects in DDX41 in Myeloid Neoplasms. Cancer Cell. 2015;27:658–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJ, et al. IRFinder: assessing the impact of intron retention on mammalian gene expression. Genome Biol. 2017;18:51.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Monteuuis G, Wong JJL, Bailey CG, Schmitz U, Rasko JEJ. The changing paradigm of intron retention: regulation, ramifications and recipes. Nucleic Acids Res. 2019;47:11497–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Monteuuis G, Schmitz U, Petrova V, Kearney PS, Rasko JEJ. Holding on to Junk Bonds: intron retention in cancer and therapy. Cancer Res. 2021;81:779–89.

    Article  CAS  PubMed  Google Scholar 

  45. Ge Y, Porse BT. The functional consequences of intron retention: alternative splicing coupled to NMD as a regulator of gene expression. Bioessays. 2014;36:236–43.

    Article  CAS  PubMed  Google Scholar 

  46. Zhen N, Zhu J, Mao S, Zhang Q, Gu S, Ma J, et al. Alternative Splicing of lncRNAs From SNHG Family Alters snoRNA Expression and Induces Chemoresistance in Hepatoblastoma. Cell Mol Gastroenterol Hepatol. 2023;16:735–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen Y, Xu X, Ding K, Tang T, Cai F, Zhang H, et al. TRIM25 promotes glioblastoma cell growth and invasion via regulation of the PRMT1/c-MYC pathway by targeting the splicing factor NONO. J Exp Clin Cancer Res. 2024;43:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu J, Liu C, Ma Y, Pan X, Chu R, Yao S, et al. STING inhibitors sensitize platinum chemotherapy in ovarian cancer by inhibiting the CGAS-STING pathway in cancer-associated fibroblasts (CAFs). Cancer Lett. 2024;588:216700.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tai-Shan Scholar Program of Shandong Province, China (tstp20231248); and the Natural Science Foundation of Shandong Province (ZR2023MH183). We thank American Journal Experts (AJE) for English language editing. The authors also thank the Laboratory Animal Center of Shandong University for mouse housing and care.

Author information

Authors and Affiliations

Authors

Contributions

KS and YWL conceived and designed the study. YLL, ZSC, ZXS, YLC, and NY collected and assembled the data. YLL, ZSC, and HMX analyzed and interpreted the data. KS, YWL, YD, and NY provided administrative, technical, or material support. KS and YWL supervised the study. YLL and YWL wrote, reviewed, and revised the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Yingwei Li or Kun Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Ethical approval was obtained from the Ethics Committee of Qilu Hospital, Shandong University (KYLL-202410-045). The animal experiment received approval from the Animal Care and Use Committee of Cheeloo College of Medicine, Shandong University (24044). All experiments were performed in compliance with relevant guidelines and regulations.

Consent for publication

The authors consent to publish the paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, Z., Duan, Y. et al. Spliceosomal GTPase EFTUD2 mediates DDX41 intron retention to promote the malignant progression of ovarian cancer. Br J Cancer (2025). https://doi.org/10.1038/s41416-025-03079-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-025-03079-1

Search

Quick links