Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The V-ATPases in cancer and cell death

Abstract

Transmembrane ATPases are membrane-bound enzyme complexes and ion transporters that can be divided into F-, V-, and A-ATPases according to their structure. The V-ATPases, also known as H+-ATPases, are large multi-subunit protein complexes composed of a peripheral ___domain (V1) responsible for the hydrolysis of ATP and a membrane-integrated ___domain (V0) that transports protons across plasma membrane or organelle membrane. V-ATPases play a fundamental role in maintaining pH homeostasis through lysosomal acidification and are involved in modulating various physiological and pathological processes, such as macropinocytosis, autophagy, cell invasion, and cell death (e.g., apoptosis, anoikis, alkaliptosis, ferroptosis, and lysosome-dependent cell death). In addition to participating in embryonic development, V-ATPase pathways, when dysfunctional, are implicated in human diseases, such as neurodegenerative diseases, osteopetrosis, distal renal tubular acidosis, and cancer. In this review, we summarize the structure and regulation of isoforms of V-ATPase subunits and discuss their context-dependent roles in cancer biology and cell death. Updated knowledge about V-ATPases may enable us to design new anticancer drugs or strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and mechanism of V-ATPase.
Fig. 2: Regulation of V-ATPase activity.
Fig. 3: V-ATPases in cancer.
Fig. 4: V-ATPase in cell death and cancer.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov. 2011;10:767–77.

    Article  CAS  PubMed  Google Scholar 

  2. Hinton A, Sennoune SR, Bond S, Fang M, Reuveni M, Sahagian GG, et al. Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem. 2009;284:16400–08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kane PM. Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. J Biol Chem. 1995;270:17025–32.

    Article  CAS  PubMed  Google Scholar 

  4. Eaton AF, Merkulova M, Brown D. The H(+)-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am J Physiol Cell Physiol. 2021;320:C392–C414.

    Article  CAS  PubMed  Google Scholar 

  5. Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer. 2011;11:671–7.

    Article  CAS  PubMed  Google Scholar 

  6. Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol. 2000;2:318–25.

    Article  CAS  PubMed  Google Scholar 

  7. Boedtkjer E, Pedersen SF. The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol. 2020;82:103–26.

    Article  CAS  PubMed  Google Scholar 

  8. Ohkuma S, Shimizu S, Noto M, Sai Y, Kinoshita K, Tamura H. Inhibition of cell growth by bafilomycin A1, a selective inhibitor of vacuolar H(+)-ATPase. Vitr Cell developmental Biol Anim. 1993;29a:862–6.

    Article  CAS  Google Scholar 

  9. Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem. 1991;266:17707–12.

    Article  CAS  PubMed  Google Scholar 

  10. Futai M, Sun-Wada GH, Wada Y, Matsumoto N, Nakanishi-Matsui M. Vacuolar-type ATPase: A proton pump to lysosomal trafficking. Proc Jpn Acad Ser B Phys Biol Sci. 2019;95:261–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abbas YM, Wu D, Bueler SA, Robinson CV, Rubinstein JL. Structure of V-ATPase from the mammalian brain. Science. 2020;367:1240–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kühlbrandt W. Structure and mechanisms of F-Type ATP synthases. Annu Rev Biochem. 2019;88:515–49.

    Article  PubMed  Google Scholar 

  13. Yoshida M, Muneyuki E, Hisabori T. ATP synthase-a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol. 2001;2:669–77.

    Article  CAS  PubMed  Google Scholar 

  14. Hirata T, Nakamura N, Omote H, Wada Y, Futai M. Regulation and reversibility of vacuolar H(+)-ATPase. J Biol Chem. 2000;275:386–9.

    Article  CAS  PubMed  Google Scholar 

  15. Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 2007;8:917–29.

    Article  CAS  PubMed  Google Scholar 

  16. Muench SP, Huss M, Song CF, Phillips C, Wieczorek H, Trinick J, et al. Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexity. J Mol Biol. 2009;386:989–99.

    Article  CAS  PubMed  Google Scholar 

  17. Dip PV, Saw WG, Roessle M, Marshansky V, Grüber G. Solution structure of subunit a, a104-363, of the Saccharomyces cerevisiae V-ATPase and the importance of its C-terminus in structure formation. J Bioenerg Biomembranes. 2012;44:341–50.

    Article  CAS  Google Scholar 

  18. Wang L, Wu D, Robinson CV, Wu H, Fu TM. Structures of a complete human V-ATPase reveal mechanisms of its assembly. Mol cell. 2020;80:501–511.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vasanthakumar T, Bueler SA, Wu D, Beilsten-Edmands V, Robinson CV, Rubinstein JL. Structural comparison of the vacuolar and Golgi V-ATPases from Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2019;116:7272–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao J, Benlekbir S, Rubinstein JL. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature. 2015;521:241–5.

    Article  CAS  PubMed  Google Scholar 

  21. MacLeod KJ, Vasilyeva E, Baleja JD, Forgac M. Mutational analysis of the nucleotide binding sites of the yeast vacuolar proton-translocating ATPase. J Biol Chem. 1998;273:150–6.

    Article  CAS  PubMed  Google Scholar 

  22. Uchida E, Ohsumi Y, Anraku Y. Characterization and function of catalytic subunit alpha of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. A study with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. J Biol Chem. 1988;263:45–51.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Q, Kane PM, Newman PR, Forgac M. Site-directed mutagenesis of the yeast V-ATPase B subunit (Vma2p). J Biol Chem. 1996;271:2018–22.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Q, Leng XH, Newman PR, Vasilyeva E, Kane PM, Forgac M. Site-directed mutagenesis of the yeast V-ATPase A subunit. J Biol Chem. 1997;272:11750–6.

    Article  CAS  PubMed  Google Scholar 

  25. Maher MJ, Akimoto S, Iwata M, Nagata K, Hori Y, Yoshida M, et al. Crystal structure of A3B3 complex of V-ATPase from Thermus thermophilus. EMBO J. 2009;28:3771–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Benlekbir S, Bueler SA, Rubinstein JL. Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11-Å resolution. Nat Struct Mol Biol. 2012;19:1356–62.

    Article  CAS  PubMed  Google Scholar 

  27. Hirata T, Iwamoto-Kihara A, Sun-Wada GH, Okajima T, Wada Y, Futai M. Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits. J Biol Chem. 2003;278:23714–9.

    Article  CAS  PubMed  Google Scholar 

  28. Mazhab-Jafari MT, Rohou A, Schmidt C, Bueler SA, Benlekbir S, Robinson CV, et al. Atomic model for the membrane-embedded V(O) motor of a eukaryotic V-ATPase. Nature. 2016;539:118–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roh SH, Stam NJ, Hryc CF, Couoh-Cardel S, Pintilie G, Chiu W, et al. The 3.5-Å CryoEM structure of nanodisc-reconstituted yeast vacuolar ATPase V(o) proton channel. Mol Cell. 2018;69:993–1004.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toei M, Toei S, Forgac M. Definition of membrane topology and identification of residues important for transport in subunit a of the vacuolar ATPase. J Biol Chem. 2011;286:35176–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kawasaki-Nishi S, Nishi T, Forgac M. Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation. Proc Natl Acad Sci USA. 2001;98:12397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Z, Inoue T, Forgac M, Wilkens S. Localization of subunit C (Vma5p) in the yeast vacuolar ATPase by immuno electron microscopy. FEBS Lett. 2006;580:2006–10.

    Article  CAS  PubMed  Google Scholar 

  33. McGuire C, Stransky L, Cotter K, Forgac M. Regulation of V-ATPase activity. Front Biosci (Landmark Ed). 2017;22:609–22.

    Article  CAS  Google Scholar 

  34. Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol cell Biol. 2010;11:50–61.

    Article  CAS  PubMed  Google Scholar 

  35. Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol cell Biol. 2009;10:597–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stransky L, Cotter K, Forgac M. The function of V-ATPases in cancer. Physiol Rev. 2016;96:1071–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I. Activation of lysosomal function during dendritic cell maturation. Science. 2003;299:1400–3.

    Article  CAS  PubMed  Google Scholar 

  38. Liberman R, Bond S, Shainheit MG, Stadecker MJ, Forgac M. Regulated assembly of vacuolar ATPase is increased during cluster disruption-induced maturation of dendritic cells through a phosphatidylinositol 3-kinase/mTOR-dependent pathway. J Biol Chem. 2014;289:1355–63.

    Article  CAS  PubMed  Google Scholar 

  39. Sautin YY, Lu M, Gaugler A, Zhang L, Gluck SL. Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol. 2005;25:575–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kohio HP, Adamson AL. Glycolytic control of vacuolar-type ATPase activity: a mechanism to regulate influenza viral infection. Virology. 2013;444:301–9.

    Article  CAS  PubMed  Google Scholar 

  41. Xu Y, Parmar A, Roux E, Balbis A, Dumas V, Chevalier S, et al. Epidermal growth factor-induced vacuolar (H+)-atpase assembly: a role in signaling via mTORC1 activation. J Biol Chem. 2012;287:26409–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stransky LA, Forgac M. Amino acid availability modulates vacuolar H+-ATPase assembly. J Biol Chem. 2015;290:27360–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Einhorn Z, Trapani JG, Liu Q, Nicolson T. Rabconnectin3α promotes stable activity of the H+ pump on synaptic vesicles in hair cells. J Neurosci: Off J Soc Neurosci. 2012;32:11144–56.

    Article  CAS  Google Scholar 

  44. Nikitina E, Larionova I, Choinzonov E, Kzhyshkowska J. Monocytes and macrophages as viral targets and reservoirs. Int J Mol Sci. 2018;19:2821.

    Article  PubMed Central  Google Scholar 

  45. Dou D, Revol R, Östbye H, Wang H, Daniels R. Influenza A virus cell entry, replication, virion assembly and movement. Front Immunol. 2018;9:1581.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang N, Shen HM. Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19. Int J Biol Sci. 2020;16:1724–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghosh S, Dellibovi-Ragheb TA, Kerviel A, Pak E, Qiu Q, Fisher M, et al. β-coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell. 2020;183:1520–1535.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miao G, Zhao H, Li Y, Ji M, Chen Y, Shi Y, et al. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Developmental Cell. 2021;56:427–442.e5.

    Article  CAS  PubMed  Google Scholar 

  49. Breton S, Brown D. Regulation of luminal acidification by the V-ATPase. Physiol. 2013;28:318–29.

    Article  CAS  Google Scholar 

  50. Duan X, Yang S, Zhang L, Yang T. V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis. Theranostics. 2018;8:5379–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alzamora R, Thali RF, Gong F, Smolak C, Li H, Baty CJ, et al. PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J Biol Chem. 2010;285:24676–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pastor-Soler N, Beaulieu V, Litvin TN, Da Silva N, Chen Y, Brown D, et al. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J Biol Chem. 2003;278:49523–9.

    Article  CAS  PubMed  Google Scholar 

  53. Zaidman NA, Tomilin VN, Hassanzadeh Khayyat N, Damarla M, Tidmore J, Capen DE, et al. Adhesion-GPCR Gpr116 (ADGRF5) expression inhibits renal acid secretion. Proc Natl Acad Sci USA. 2020;117:26470–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vitavska O, Wieczorek H, Merzendorfer H. A novel role for subunit C in mediating binding of the H+-V-ATPase to the actin cytoskeleton. J Biol Chem. 2003;278:18499–505.

    Article  CAS  PubMed  Google Scholar 

  55. Chu A, Zirngibl RA, Manolson MF. The V-ATPase a3 subunit: structure, function and therapeutic potential of an essential biomolecule in osteoclastic bone resorption. Int J Mol Sci. 2021;22:6934.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bowman EJ, Siebers A, Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA. 1988;85:7972–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bowman BJ, McCall ME, Baertsch R, Bowman EJ. A model for the proteolipid ring and bafilomycin/concanamycin-binding site in the vacuolar ATPase of Neurospora crassa. J Biol Chem. 2006;281:31885–93.

    CAS  PubMed  Google Scholar 

  58. Lebreton S, Jaunbergs J, Roth MG, Ferguson DA, De Brabander JK. Evaluating the potential of vacuolar ATPase inhibitors as anticancer agents and multigram synthesis of the potent salicylihalamide analog saliphenylhalamide. Bioorg medicinal Chem Lett. 2008;18:5879–83.

    Article  CAS  Google Scholar 

  59. Garcia-Rodriguez J, Mendiratta S, White MA, Xie XS, De Brabander JK. Synthesis and structure-activity studies of the V-ATPase inhibitor saliphenylhalamide (SaliPhe) and simplified analogs. Bioorg medicinal Chem Lett. 2015;25:4393–8.

    Article  CAS  Google Scholar 

  60. Menche D, Hassfeld J, Sasse F, Huss M, Wieczorek H. Design, synthesis, and biological evaluation of novel analogues of archazolid: a highly potent simplified V-ATPase inhibitor. Bioorg medicinal Chem Lett. 2007;17:1732–5.

    Article  CAS  Google Scholar 

  61. Luong B, Schwenk R, Bräutigam J, Müller R, Menche D, Bischoff I, et al. The vacuolar-type ATPase inhibitor archazolid increases tumor cell adhesion to endothelial cells by accumulating extracellular collagen. PloS One. 2018;13:e0203053.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gagliardi S, Nadler G, Consolandi E, Parini C, Morvan M, Legave MN, et al. 5-(5,6-Dichloro-2-indolyl)-2-methoxy-2,4-pentadienamides: novel and selective inhibitors of the vacuolar H+-ATPase of osteoclasts with bone antiresorptive activity. J Med Chem. 1998;41:1568–73.

    Article  CAS  PubMed  Google Scholar 

  63. Supino R, Petrangolini G, Pratesi G, Tortoreto M, Favini E, Bo LD, et al. Antimetastatic effect of a small-molecule vacuolar H+-ATPase inhibitor in in vitro and in vivo preclinical studies. J Pharmacol Exp Ther. 2008;324:15–22.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang F, Shen H, Fu Y, Yu G, Cao F, Chang W, et al. Vacuolar membrane ATPase activity 21 predicts a favorable outcome and acts as a suppressor in colorectal cancer. Front Oncol. 2020;10:605801.

    Article  PubMed  Google Scholar 

  65. Nishie M, Suzuki E, Hattori M, Kawaguch K, Kataoka TR, Hirata M, et al. Downregulated ATP6V1B1 expression acidifies the intracellular environment of cancer cells leading to resistance to antibody-dependent cellular cytotoxicity. Cancer Immunol Immunother. 2021;70:817–30.

    Article  CAS  PubMed  Google Scholar 

  66. Whitton B, Okamoto H, Rose-Zerilli M, Packham G, Crabb SJ. V-ATPase inhibition decreases mutant androgen receptor activity in castrate-resistant prostate cancer. Mol Cancer Ther. 2021;20:739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ibrahim SA, Kulshrestha A, Katara GK, Riehl V, Sahoo M, Beaman KD. Cancer-associated V-ATPase induces delayed apoptosis of protumorigenic neutrophils. Mol Oncol. 2020;14:590–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhong B, Liu M, Bai C, Ruan Y, Wang Y, Qiu L, et al. Caspase-8 induces lysosome-associated cell death in cancer cells. Mol Ther. 2020;28:1078–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Couto-Vieira J, Nicolau-Neto P, Costa EP, Figueira FF, Simao TA, Okorokova-Facanha AL, et al. Multi-cancer V-ATPase molecular signatures: A distinctive balance of subunit C isoforms in esophageal carcinoma. EBioMedicine. 2020;51:102581.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Santos-Pereira C, Rodrigues LR, Corte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev. 2021;41:1927–64.

    Article  CAS  PubMed  Google Scholar 

  71. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018;18:452–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hraběta J, Belhajová M, Šubrtová H, Merlos Rodrigo MA, Heger Z, Eckschlager T. Drug sequestration in lysosomes as one of the mechanisms of chemoresistance of cancer cells and the possibilities of its inhibition. Int J Mol Sci. 2020;21:4392.

    Article  PubMed Central  Google Scholar 

  73. Ferguson PJ, Phillips JR, Selner M, Cass CE. Differential activity of vincristine and vinblastine against cultured cells. Cancer Res. 1984;44:3307–12.

    CAS  PubMed  Google Scholar 

  74. Vukovic V, Tannock IF. Influence of low pH on cytotoxicity of paclitaxel, mitoxantrone and topotecan. Br J Cancer. 1997;75:1167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Marquardt D, Center MS. Involvement of vacuolar H(+)-adenosine triphosphatase activity in multidrug resistance in HL60 cells. J Natl Cancer Inst. 1991;83:1098–102.

    Article  CAS  PubMed  Google Scholar 

  76. Patel KJ, Lee C, Tan Q, Tannock IF. Use of the proton pump inhibitor pantoprazole to modify the distribution and activity of doxorubicin: a potential strategy to improve the therapy of solid tumors. Clin Cancer Res. 2013;19:6766–76.

    Article  CAS  PubMed  Google Scholar 

  77. Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Rey JM, García-García A. V-ATPase inhibitors and implication in cancer treatment. Cancer Treat Rev. 2009;35:707–13.

    Article  PubMed  Google Scholar 

  78. Wang Y, Zhang L, Wei Y, Huang W, Li L, Wu AA, et al. Pharmacological targeting of vacuolar H(+)-ATPase via subunit V1G combats multidrug-resistant cancer. Cell Chem Biol. 2020;27:1359–1370.e8.

    Article  CAS  PubMed  Google Scholar 

  79. You H, Jin J, Shu H, Yu B, De Milito A, Lozupone F, et al. Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells. Cancer Lett. 2009;280:110–9.

    Article  CAS  PubMed  Google Scholar 

  80. He J, Shi XY, Li ZM, Pan XH, Li ZL, Chen Y, et al. Proton pump inhibitors can reverse the YAP mediated paclitaxel resistance in epithelial ovarian cancer. BMC Mol Cell Biol. 2019;20:49.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kulshrestha A, Katara GK, Ginter J, Pamarthy S, Ibrahim SA, Jaiswal MK, et al. Selective inhibition of tumor cell associated Vacuolar-ATPase ‘a2’ isoform overcomes cisplatin resistance in ovarian cancer cells. Mol Oncol. 2016;10:789–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pérez-Sayáns M, Reboiras-López MD, Somoza-Martín JM, Barros-Angueira F, Diz PG, Rey JM, et al. Measurement of ATP6V1C1 expression in brush cytology samples as a diagnostic and prognostic marker in oral squamous cell carcinoma. Cancer Biol Ther. 2010;9:1057–64.

    Article  PubMed  Google Scholar 

  83. Salerno M, Avnet S, Bonuccelli G, Hosogi S, Granchi D, Baldini N. Impairment of lysosomal activity as a therapeutic modality targeting cancer stem cells of embryonal rhabdomyosarcoma cell line RD. PloS one. 2014;9:e110340.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mei F, You J, Liu B, Zhang M, Liu J, Zhang B, et al. LASS2/TMSG1 inhibits growth and invasion of breast cancer cell in vitro through regulation of vacuolar ATPase activity. Tumour Biol. 2015;36:2831–44.

    Article  CAS  PubMed  Google Scholar 

  85. Gu D, Jin H, Jin G, Wang C, Wang N, Hu F, et al. The asialoglycoprotein receptor suppresses the metastasis of hepatocellular carcinoma via LASS2-mediated inhibition of V-ATPase activity. Cancer Lett. 2016;379:107–16.

    Article  CAS  PubMed  Google Scholar 

  86. Lozupone F, Borghi M, Marzoli F, Azzarito T, Matarrese P, Iessi E, et al. TM9SF4 is a novel V-ATPase-interacting protein that modulates tumor pH alterations associated with drug resistance and invasiveness of colon cancer cells. Oncogene. 2015;34:5163–74.

    Article  CAS  PubMed  Google Scholar 

  87. Sennoune SR, Bakunts K, Martínez GM, Chua-Tuan JL, Kebir Y, Attaya MN, et al. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol. 2004;286:C1443–52.

    Article  CAS  PubMed  Google Scholar 

  88. Capecci J, Forgac M. The function of vacuolar ATPase (V-ATPase) a subunit isoforms in invasiveness of MCF10a and MCF10CA1a human breast cancer cells. J Biol Chem. 2013;288:32731–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu P, Chen H, Han L, Zou X, Shen W. Expression and role of V1A subunit of V-ATPases in gastric cancer cells. Int J Clin Oncol. 2015;20:725–35.

    Article  CAS  PubMed  Google Scholar 

  90. Chung C, Mader CC, Schmitz JC, Atladottir J, Fitchev P, Cornwell ML, et al. The vacuolar-ATPase modulates matrix metalloproteinase isoforms in human pancreatic cancer. Lab Investig; a J Tech methods Pathol. 2011;91:732–43.

    Article  CAS  Google Scholar 

  91. Flinck M, Hagelund S, Gorbatenko A, Severin M, Pedraz-Cuesta E, Novak I, et al. The vacuolar H(+) ATPase α3 subunit negatively regulates migration and invasion of human pancreatic ductal adenocarcinoma cells. Cells. 2020;9:465.

    Article  PubMed Central  Google Scholar 

  92. Ohta T, Numata M, Yagishita H, Futagami F, Tsukioka Y, Kitagawa H, et al. Expression of 16 kDa proteolipid of vacuolar-type H(+)-ATPase in human pancreatic cancer. Br J Cancer. 1996;73:1511–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kulshrestha A, Katara GK, Ibrahim S, Pamarthy S, Jaiswal MK, Gilman Sachs A, et al. Vacuolar ATPase ‘a2’ isoform exhibits distinct cell surface accumulation and modulates matrix metalloproteinase activity in ovarian cancer. Oncotarget. 2015;6:3797–810.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ibrahim SA, Katara GK, Kulshrestha A, Jaiswal MK, Amin MA, Beaman KD. Breast cancer associated a2 isoform vacuolar ATPase immunomodulates neutrophils: potential role in tumor progression. Oncotarget. 2015;6:33033–45.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Son SW, Kim SH, Moon EY, Kim DH, Pyo S, Um SH. Prognostic significance and function of the vacuolar H+-ATPase subunit V1E1 in esophageal squamous cell carcinoma. Oncotarget. 2016;7:49334–48.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gocheva V, Joyce JA. Cysteine cathepsins and the cutting edge of cancer invasion.Cell Cycle.2007;6:60–4.

    Article  CAS  PubMed  Google Scholar 

  97. Hendrix A, Sormunen R, Westbroek W, Lambein K, Denys H, Sys G, et al. Vacuolar H+ ATPase expression and activity is required for Rab27B-dependent invasive growth and metastasis of breast cancer. Int J cancer. 2013;133:843–54.

    Article  CAS  PubMed  Google Scholar 

  98. Kubisch R, Fröhlich T, Arnold GJ, Schreiner L, von Schwarzenberg K, Roidl A, et al. V-ATPase inhibition by archazolid leads to lysosomal dysfunction resulting in impaired cathepsin B activation in vivo. Int J Cancer. 2014;134:2478–88.

    Article  CAS  PubMed  Google Scholar 

  99. Holliday LS, Lu M, Lee BS, Nelson RD, Solivan S, Zhang L, et al. The amino-terminal ___domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem. 2000;275:32331–7.

    Article  CAS  PubMed  Google Scholar 

  100. Licon-Munoz Y, Michel V, Fordyce CA, Parra KJ. F-actin reorganization by V-ATPase inhibition in prostate cancer. Biol open. 2017;6:1734–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Galenkamp KMO, Sosicka P, Jung M, Recouvreux MV, Zhang Y, Moldenhauer MR, et al. Golgi acidification by NHE7 regulates cytosolic pH homeostasis in pancreatic cancer cells. Cancer Disco. 2020;10:822–35.

    Article  CAS  Google Scholar 

  102. Michel V, Licon-Munoz Y, Trujillo K, Bisoffi M, Parra KJ. Inhibitors of vacuolar ATPase proton pumps inhibit human prostate cancer cell invasion and prostate-specific antigen expression and secretion. Int J Cancer. 2013;132:E1–10.

    Article  CAS  PubMed  Google Scholar 

  103. Wiedmann RM, von Schwarzenberg K, Palamidessi A, Schreiner L, Kubisch R, Liebl J, et al. The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of endocytic activation of the Rho-GTPase Rac1. Cancer Res. 2012;72:5976–87.

    Article  CAS  PubMed  Google Scholar 

  104. Wang J, Chen D, Song W, Liu Z, Ma W, Li X, et al. ATP6L promotes metastasis of colorectal cancer by inducing epithelial-mesenchymal transition. Cancer Sci. 2020;111:477–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xu X, Liu B, Zou P, Zhang Y, You J, Pei F. Silencing of LASS2/TMSG1 enhances invasion and metastasis capacity of prostate cancer cell. J Cell Biochem. 2014;115:731–43.

    Article  CAS  PubMed  Google Scholar 

  106. Zi Y, Zhao W, Zhou J, He H, Xie M. Silencing of TMSG1 enhances metastasis capacity by targeting V-ATPase in breast cancer. Int J Clin Exp Pathol. 2015;8:1312–20.

    PubMed  PubMed Central  Google Scholar 

  107. Fogarty FM, O’Keeffe J, Zhadanov A, Papkovsky D, Ayllon V, O’Connor R. HRG-1 enhances cancer cell invasive potential and couples glucose metabolism to cytosolic/extracellular pH gradient regulation by the vacuolar-H(+) ATPase. Oncogene. 2014;33:4653–63.

    Article  CAS  PubMed  Google Scholar 

  108. Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011;89:836–43.

    Article  CAS  PubMed  Google Scholar 

  109. Hussein NA, Malla S, Pasternak MA, Terrero D, Brown NG, Ashby CR Jr., et al. The role of endolysosomal trafficking in anticancer drug resistance. Drug resistance Updat. 2021;57:100769.

    Article  CAS  Google Scholar 

  110. Zhang Y, Recouvreux MV, Jung M, Galenkamp KMO, Li Y, Zagnitko O, et al. Macropinocytosis in cancer-associated fibroblasts is dependent on CaMKK2/ARHGEF2 signaling and functions to support tumor and stromal cell fitness. Cancer Disco. 2021;11:1808–25.

    Article  CAS  Google Scholar 

  111. Kim SM, Nguyen TT, Ravi A, Kubiniok P, Finicle BT, Jayashankar V, et al. PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells. Cancer Disco. 2018;8:866–83.

    Article  CAS  Google Scholar 

  112. Robinson MW, Overmeyer JH, Young AM, Erhardt PW, Maltese WA. Synthesis and evaluation of indole-based chalcones as inducers of methuosis, a novel type of nonapoptotic cell death. J Med Chem. 2012;55:1940–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sønder SL, Häger SC, Heitmann ASB, Frankel LB, Dias C, Simonsen AC, et al. Restructuring of the plasma membrane upon damage by LC3-associated macropinocytosis. Sci Adv. 2021;7:eabg1969.

    Article  PubMed  Google Scholar 

  114. Ramirez C, Hauser AD, Vucic EA, Bar-Sagi D. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature. 2019;576:477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 2021;17:1–382.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Li J, Chen X, Kang R, Zeh H, Klionsky DJ, Tang D. Regulation and function of autophagy in pancreatic cancer. Autophagy. 2021;17:3275–96.

    Article  CAS  PubMed  Google Scholar 

  117. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell. 2009;137:1062–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cai J, Li R, Xu X, Zhang L, Lian R, Fang L, et al. CK1α suppresses lung tumour growth by stabilizing PTEN and inducing autophagy. Nat cell Biol. 2018;20:465–78.

    Article  CAS  PubMed  Google Scholar 

  119. Nassour J, Radford R, Correia A, Fusté JM, Schoell B, Jauch A, et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature. 2019;565:659–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kang R, Xie Y, Zhang Q, Hou W, Jiang Q, Zhu S, et al. Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer. Cell Res. 2017;27:916–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: recent advances and future directions. Cancer Disco. 2019;9:1167–81.

    Article  CAS  Google Scholar 

  122. Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D. Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem Biol. 2020; 27:420–35.

  123. Xie Y, Kang R, Sun X, Zhong M, Huang J, Klionsky DJ, et al. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy. 2015;11:28–45.

    Article  PubMed  Google Scholar 

  124. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell. 2010;141:1146–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mauvezin C, Nagy P, Juhász G, Neufeld TP. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat Commun. 2015;6:7007.

    Article  PubMed  Google Scholar 

  126. Yao X, Chen H, Xu B, Lu J, Gu J, Chen F, et al. The ATPase subunit of ATP6V1C1 inhibits autophagy and enhances radiotherapy resistance in esophageal squamous cell carcinoma. Gene. 2021;768:145261.

    Article  CAS  PubMed  Google Scholar 

  127. Wang F, Gatica D, Ying ZX, Peterson LF, Kim P, Bernard D, et al. Follicular lymphoma-associated mutations in vacuolar ATPase ATP6V1B2 activate autophagic flux and mTOR. J Clin Investig. 2019;129:1626–40.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kallifatidis G, Hoepfner D, Jaeg T, Guzman EA, Wright AE. The marine natural product manzamine A targets vacuolar ATPases and inhibits autophagy in pancreatic cancer cells. Mar Drugs. 2013;11:3500–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li J, Chen X, Kang R, Zeh H, Klionsky DJ, Tang D. Regulation and function of autophagy in pancreatic cancer. Autophagy. 2021; 17:3275–96.

  130. Xu Y, Zhou P, Cheng S, Lu Q, Nowak K, Hopp AK, et al. A bacterial effector reveals the V-ATPase-ATG16L1 axis that initiates xenophagy. Cell. 2019;178:552–566.e20.

    Article  CAS  PubMed  Google Scholar 

  131. Li W, He P, Huang Y, Li YF, Lu J, Li M, et al. Selective autophagy of intracellular organelles: recent research advances. Theranostics. 2021;11:222–56.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019;29:347–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17:395–417.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Graham RM, Thompson JW, Webster KA. Inhibition of the vacuolar ATPase induces Bnip3-dependent death of cancer cells and a reduction in tumor burden and metastasis. Oncotarget. 2014;5:1162–73.

    Article  PubMed  Google Scholar 

  136. Lee YY, Jeon HK, Hong JE, Cho YJ, Ryu JY, Choi JJ, et al. Proton pump inhibitors enhance the effects of cytotoxic agents in chemoresistant epithelial ovarian carcinoma. Oncotarget. 2015;6:35040–50.

    Article  PubMed  PubMed Central  Google Scholar 

  137. von Schwarzenberg K, Lajtos T, Simon L, Müller R, Vereb G, Vollmar AM. V-ATPase inhibition overcomes trastuzumab resistance in breast cancer. Mol Oncol. 2014;8:9–19.

    Article  Google Scholar 

  138. Hong J, Wuest TR, Min Y, Lin PC. Oxygen tension regulates lysosomal activation and receptor tyrosine kinase degradation. Cancers. 2019; 11:1653.

  139. Kim BK, Nam SW, Min BS, Ban HS, Paik S, Lee K, et al. Bcl-2-dependent synthetic lethal interaction of the IDF-11774 with the V0 subunit C of vacuolar ATPase (ATP6V0C) in colorectal cancer. Br J Cancer. 2018;119:1347–1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cheung KS, Leung WK. Long-term use of proton-pump inhibitors and risk of gastric cancer: a review of the current evidence. Therapeutic Adv Gastroenterol. 2019;12:1756284819834511.

    Article  Google Scholar 

  141. Kulshrestha A, Katara GK, Ibrahim SA, Riehl VE, Schneiderman S, Bilal M, et al. In vivo anti-V-ATPase antibody treatment delays ovarian tumor growth by increasing antitumor immune responses. Mol Oncol. 2020;14:2436–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lee GH, Kim DS, Kim HT, Lee JW, Chung CH, Ahn T, et al. Enhanced lysosomal activity is involved in Bax inhibitor-1-induced regulation of the endoplasmic reticulum (ER) stress response and cell death against ER stress: involvement of vacuolar H+-ATPase (V-ATPase). J Biol Chem. 2011;286:24743–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Horova V, Hradilova N, Jelinkova I, Koc M, Svadlenka J, Brazina J, et al. Inhibition of vacuolar ATPase attenuates the TRAIL-induced activation of caspase-8 and modulates the trafficking of TRAIL receptosomes. FEBS J. 2013;280:3436–50.

    Article  CAS  PubMed  Google Scholar 

  144. Gilmore AP. Anoikis. Cell Death Differ. 2005;12 Suppl 2:1473–7.

    Article  CAS  PubMed  Google Scholar 

  145. Adeshakin FO, Adeshakin AO, Liu Z, Lu X, Cheng J, Zhang P, et al. Upregulation of V-ATPase by STAT3 activation promotes anoikis resistance and tumor metastasis. J Cancer. 2021;12:4819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Schempp CM, von Schwarzenberg K, Schreiner L, Kubisch R, Müller R, Wagner E, et al. V-ATPase inhibition regulates anoikis resistance and metastasis of cancer cells. Mol Cancer Ther. 2014;13:926–37.

    Article  CAS  PubMed  Google Scholar 

  147. Song X, Zhu S, Xie Y, Liu J, Sun L, Zeng D, et al. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology. 2018;154:1480–93.

    Article  CAS  PubMed  Google Scholar 

  148. Zhu S, Liu J, Kang R, Yang M, Tang D. Targeting NF-kappaB-dependent alkaliptosis for the treatment of venetoclax-resistant acute myeloid leukemia cells. Biochem Biophys Res Commun. 2021;562:55–61.

    Article  CAS  PubMed  Google Scholar 

  149. Liu J, Kuang F, Kang R, Tang D. Alkaliptosis: a new weapon for cancer therapy. Cancer Gene Ther. 2020;27:267–9.

    Article  PubMed  Google Scholar 

  150. Fang X, Dai E, Bai L, Liu J, Kang R, Zhao Y, et al. The HMGB1-AGER-STING1 pathway mediates the sterile inflammatory response to alkaliptosis. Biochem Biophys Res Commun. 2021;560:165–71.

    Article  CAS  PubMed  Google Scholar 

  151. Zhang X, Ding M, Zhu P, Huang H, Zhuang Q, Shen J, et al. New insights into the Nrf-2/HO-1 signaling axis and its application in pediatric respiratory diseases. Oxid Med Cell Longev. 2019;2019:3214196.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, et al. HMGB1 in health and disease. Mol Asp Med. 2014;40:1–116.

    Article  CAS  Google Scholar 

  153. Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, et al. Endogenous HMGB1 regulates autophagy. J Cell Biol. 2010;190:881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu B, Palmfeldt J, Lin L, Colaço A, Clemmensen KKB, Huang J, et al. STAT3 associates with vacuolar H(+)-ATPase and regulates cytosolic and lysosomal pH. Cell Res. 2018;28:996–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: A Regulated. Cell Death Nexus Link Metab, Redox Biol, Dis Cell. 2017;171:273–85.

    CAS  Google Scholar 

  157. Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25.

    Article  CAS  PubMed  Google Scholar 

  158. Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021; 18:280–96.

  159. Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2021;17:2054–81.

    Article  CAS  PubMed  Google Scholar 

  160. Lin Z, Liu J, Kang R, Yang M, Tang D. Lipid metabolism in ferroptosis. Adv Biol (Weinh). 2021;5:e2100396.

    Article  Google Scholar 

  161. Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q, et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe. 2018;24:97–108 e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–91.

    Article  CAS  PubMed  Google Scholar 

  163. Dai E, Han L, Liu J, Xie Y, Zeh HJ, Kang R, et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat Commun. 2020;11:6339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Canli O, Alankus YB, Grootjans S, Vegi N, Hultner L, Hoppe PS, et al. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood. 2016;127:139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liu L, Liu B, Guan G, Kang R, Dai Y, Tang D. Cyclophosphamide-induced GPX4 degradation triggers parthanatos by activating AIFM1. Biochem Biophys Res Commun. 2022;606:68–74.

    Article  CAS  PubMed  Google Scholar 

  166. Chen X, Kang R, Kroemer G, Tang D. Organelle-specific regulation of ferroptosis. Cell Death Differ. 2021;28:2843–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Asano T, Komatsu M, Yamaguchi-Iwai Y, Ishikawa F, Mizushima N, Iwai K. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol Cell Biol. 2011;31:2040–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kuang F, Liu J, Li C, Kang R, Tang D. Cathepsin B is a mediator of organelle-specific initiation of ferroptosis. Biochem Biophys Res Commun. 2020;533:1464–9.

    Article  CAS  PubMed  Google Scholar 

  169. Martina JA, Chen Y, Gucek M, Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8:903–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Dai C, Chen X, Li J, Comish P, Kang R, Tang D. Transcription factors in ferroptotic cell death. Cancer Gene Ther. 2020;27:645–56.

    Article  CAS  PubMed  Google Scholar 

  171. Li L, Sun S, Tan L, Wang Y, Wang L, Zhang Z, et al. Polystyrene Nanoparticles Reduced ROS and Inhibited Ferroptosis by Triggering Lysosome Stress and TFEB Nucleus Translocation in a Size-Dependent Manner. Nano Lett. 2019;19:7781–92.

    Article  CAS  PubMed  Google Scholar 

  172. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ,3rd. et al.Autophagy promotes ferroptosis Degrad ferritin.Autophagy.2016;12:1425–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yang M, Chen P, Liu J, Zhu S, Kroemer G, Klionsky DJ, et al. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv. 2019;5:eaaw2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA. 2019;116:2996–3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Liu Y, Wang Y, Liu J, Kang R, Tang D. Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. Cancer Gene Ther. 2021;28:55–63.

    Article  CAS  PubMed  Google Scholar 

  176. Li J, Liu J, Xu Y, Wu R, Chen X, Song X, et al. Tumor heterogeneity in autophagy-dependent eerroptosis. Autophagy. 2021;17:3361–74.

  177. Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H, et al. Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun. 2019;508:997–1003.

    Article  CAS  PubMed  Google Scholar 

  178. Aits S, Jaattela M. Lysosomal cell death at a glance. J Cell Sci. 2013;126:1905–12.

    Article  CAS  PubMed  Google Scholar 

  179. Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization as a cell death mechanism in cancer cells. Biochem Soc Trans. 2018;46:207–15.

    Article  CAS  PubMed  Google Scholar 

  180. Matsuda S, Okada N, Kodama T, Honda T, Iida T. A cytotoxic type III secretion effector of Vibrio parahaemolyticus targets vacuolar H+-ATPase subunit c and ruptures host cell lysosomes. PLoS Pathog. 2012;8:e1002803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hino H, Iriyama N, Kokuba H, Kazama H, Moriya S, Takano N, et al. Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes. Cancer Sci. 2020;111:2132–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Huang J, Chen P, Liu K, Liu J, Zhou B, Wu R, et al. CDK1/2/5 inhibition overcomes IFNG-mediated adaptive immune resistance in pancreatic cancer. Gut. 2021;70:890–9.

    Article  CAS  PubMed  Google Scholar 

  183. Liu K, Huang J, Liu J, Li C, Kroemer G, Tang D, et al. HSP90 mediates IFNgamma-induced adaptive resistance to anti-PD-1 immunotherapy. Cancer Res. 2022. https://doi.org/10.1158/0008-5472.CAN-21-3917. Online ahead of print.

  184. Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D. Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 2020;66:89–100.

    Article  CAS  PubMed  Google Scholar 

  185. Li J, Liu J, Xu Y, Wu R, Chen X, Song X, et al. Tumor heterogeneity in autophagy-dependent ferroptosis. Autophagy. 2021;17:3361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Legrand AJ, Konstantinou M, Goode EF, Meier P. The diversification of cell death and immunity: memento mori. Mol Cell. 2019;76:232–42.

    Article  CAS  PubMed  Google Scholar 

  187. Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer 2020; 8:e000337.

  188. Pamarthy S, Jaiswal MK, Kulshreshtha A, Katara GK, Gilman-Sachs A, Beaman KD. The vacuolar ATPase a2-subunit regulates Notch signaling in triple-negative breast cancer cells. Oncotarget. 2015;6:34206–20.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Kulshrestha A, Katara GK, Ibrahim SA, Riehl V, Sahoo M, Dolan J, et al. Targeting V-ATPase isoform restores cisplatin activity in resistant ovarian cancer: inhibition of autophagy, endosome function, and ERK/MEK pathway. J Oncol. 2019;2019:2343876.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Chung CY, Shin HR, Berdan CA, Ford B, Ward CC, Olzmann JA, et al. Covalent targeting of the vacuolar H(+)-ATPase activates autophagy via mTORC1 inhibition. Nat Chem Biol. 2019;15:776–85.

    Article  CAS  PubMed  Google Scholar 

  191. Formica M, Storaci AM, Bertolini I, Carminati F, Knævelsrud H, Vaira V, et al. V-ATPase controls tumor growth and autophagy in a Drosophila model of gliomagenesis. Autophagy. 2021; 17:4442–52.

  192. Torigoe T, Izumi H, Ishiguchi H, Uramoto H, Murakami T, Ise T, et al. Enhanced expression of the human vacuolar H+-ATPase c subunit gene (ATP6L) in response to anticancer agents. J Biol Chem. 2002;277:36534–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dave Primm (Department of Surgery, University of Texas Southwestern Medical Center) for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

FC and DT wrote the manuscript. RK and JL edited the manuscript. All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

Corresponding authors

Correspondence to Jiao Liu or Daolin Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Kang, R., Liu, J. et al. The V-ATPases in cancer and cell death. Cancer Gene Ther 29, 1529–1541 (2022). https://doi.org/10.1038/s41417-022-00477-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00477-y

This article is cited by

Search

Quick links