Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuronal LAMP2A-mediated reduction of adenylyl cyclases induces acute neurodegenerative responses and neuroinflammation after ischemic stroke

Abstract

Lysosomes regulate cellular metabolism to maintain cell survival, but the mechanisms whereby they determine neuronal cell fate after acute metabolic stress are unknown. Neuron-enriched lysosomal membrane protein LAMP2A is involved in selective chaperone-mediated autophagy and exosome loading. This study demonstrates that abnormalities in the neuronal LAMP2A-lysosomal pathway cause neurological deficits following ischemic stroke and that this is an early inducer of the PANoptosis-like molecular pathway and neuroinflammation, simultaneously inducing upregulation of FADD, RIPK3, and MLKL after ischemia. Quantitative proteomic and pharmacological analysis showed that after acute metabolic stress, the neuronal LAMP2A pathway induced acute synaptic degeneration and PANoptosis-like responses involving downregulation of protein kinase A (PKA) signaling. LAMP2A directed post-stroke lysosomal degradation of adenylyl cyclases (ADCY), including ADCY1 and ADCY3 in cortical neurons. Post-stroke treatment with cAMP mimetic or ADCY activator salvaged cortical neurons from PANoptosis-like responses and neuroinflammation, suggesting that the neuronal ADCY–cAMP–PKA axis is an upstream arrester of the pathophysiological process following an ischemic stroke. This study demonstrates that the neuronal LAMP2A-lysosmal pathway drives intricate acute neurodegenerative and neuroinflammatory responses after brain metabolic stress by downregulating the ADCY–PKA signaling cascade, and highlights the therapeutic potential of PKA signal inducers for improving stroke outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuronal Lamp2 gene deletion alleviates cerebral infarction and long-term neural deficits in mice after ischemic stroke.
Fig. 2: CMA pathway is overactivated and LAMP2A deficiency lessens molecular levels of PANoptosis-like cell death in primary cortical neurons after OGD/R.
Fig. 3: LAMP2A deficiency prevents against post-stroke PANoptosis-like molecular pathway of neuronal death and glial activation in mice.
Fig. 4: Proteome profiles of LAMP2A deficiency in cortical neurons after acute metabolic stress.
Fig. 5: PKA inhibitor H89 rekindles post-stroke PANoptosis-like molecular pathway of neuronal death under conditions of LAMP2A deficiency in mice.
Fig. 6: Neuronal LAMP2A-lysosome pathway is responsible for the degradation of ADCY1 and ADCY3 in mice after ischemic stroke.
Fig. 7: Inducers of the PKA signaling pathway suppress neuronal PANoptosis-like responses and glial activation in mice following stroke.
Fig. 8: Inducers of the PKA signaling pathway alleviate cerebral infarction and long-term neurocognitive deficits in mice following stroke.

Similar content being viewed by others

Data availability

The original data in the study are included in this article or the supplementary material. Additional data are available upon reasonable request.

References

  1. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20:795–820.

    Article  Google Scholar 

  2. Huang KL, Hsiao IT, Ho MY, Hsu JL, Chang YJ, Chang TY, et al. Investigation of reactive astrogliosis effect on post-stroke cognitive impairment. J Neuroinflammation. 2020;17:308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sarraj A, Mlynash M, Heit J, Pujara D, Lansberg M, Marks M, et al. Clinical outcomes and identification of patients with persistent penumbral profiles beyond 24 h from last known well: Analysis from DEFUSE 3. Stroke. 2021;52:838–49.

    Article  CAS  PubMed  Google Scholar 

  4. Rost NS, Brodtmann A, Pase MP, van Veluw SJ, Biffi A, Duering M, et al. Post-stroke cognitive impairment and dementia. Circ Res. 2022;130:1252–71.

    Article  CAS  PubMed  Google Scholar 

  5. Rangaraju V, Calloway N, Ryan TA. Activity-driven local ATP synthesis is required for synaptic function. Cell. 2014;156:825–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pulido C, Ryan TA. Synaptic vesicle pools are a major hidden resting metabolic burden of nerve terminals. Sci Adv. 2021;7:eabi9027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones TA. Motor compensation and its effects on neural reorganization after stroke. Nat Rev Neurosci. 2017;18:267–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yao GY, Zhu Q, Xia J, Chen FJ, Huang M, Liu J, et al. Ischemic postconditioning confers cerebroprotection by stabilizing VDACs after brain ischemia. Cell Death Dis. 2018;9:1033.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xia J, Zhang T, Sun Y, Huang Z, Shi D, Qin D, et al. Suppression of neuronal CDK9/p53/VDAC signaling provides bioenergetic support and improves post-stroke neuropsychiatric outcomes. Cell Mol Life Sci. 2024;81:384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 2017;22:1520–30.

    Article  CAS  PubMed  Google Scholar 

  11. Poh L, Kang SW, Baik SH, Ng GYQ, She DT, Balaganapathy P, et al. Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun. 2019;75:34–47.

    Article  CAS  PubMed  Google Scholar 

  12. Naito MG, Xu D, Amin P, Lee J, Wang H, Li W, et al. Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke. Proc Natl Acad Sci USA. 2020;117:4959–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Li M, Li X, Zhang H, Wang L, Wu X, et al. Catalytically inactive RIP1 and RIP3 deficiency protect against acute ischemic stroke by inhibiting necroptosis and neuroinflammation. Cell Death Dis. 2020;11:565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan WT, Zhao WJ, Hu XM, Ban XX, Ning WY, Wan H, et al. PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons. Neural Regen Res. 2023;18:357–63.

    CAS  PubMed  Google Scholar 

  15. Pandian N, Kanneganti TD. PANoptosis: A unique innate immune inflammatory cell death modality. J Immunol. 2022;209:1625–33.

    Article  CAS  PubMed  Google Scholar 

  16. Rothaug M, Stroobants S, Schweizer M, Peters J, Zunke F, Allerding M, et al. LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease. Acta Neuropathol Commun. 2015;3:6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ferreira JV, da Rosa Soares A, Ramalho J, Máximo Carvalho C, Cardoso MH, Pintado P, et al. LAMP2A regulates the loading of proteins into exosomes. Sci Adv. 2022;8:eabm1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lüllmann-Rauch R, et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature. 2000;406:902–6.

    Article  CAS  PubMed  Google Scholar 

  19. Manso AM, Hashem SI, Nelson BC, Gault E, Soto-Hermida A, Villarruel E, et al. Systemic AAV9.LAMP2B injection reverses metabolic and physiologic multiorgan dysfunction in a murine model of Danon disease. Sci Transl Med. 2020;12:eaax1744.

    Article  CAS  PubMed  Google Scholar 

  20. Hase K, Contu VR, Kabuta C, Sakai R, Takahashi M, Kataoka N, et al. Cytosolic ___domain of SIDT2 carries an arginine-rich motif that binds to RNA/DNA and is important for the direct transport of nucleic acids into lysosomes. Autophagy. 2020;16:1974–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yardeni M, Weisman O, Mandel H, Weinberger R, Quarta G, Salazar-Mendiguchía J, et al. Psychiatric and cognitive characteristics of individuals with Danon disease (LAMP2 gene mutation). Am J Med Genet A. 2017;173:2461–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alcalai R, Arad M, Wakimoto H, Yadin D, Gorham J, Wang L, et al. LAMP2 cardiomyopathy: Consequences of impaired autophagy in the heart. J Am Heart Assoc. 2021;10:e018829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bourdenx M, Martín-Segura A, Scrivo A, Rodriguez-Navarro JA, Kaushik S, Tasset I, et al. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell. 2021;184:2696–2714.e25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park Y, Liu C, Luo T, Dietrich WD, Bramlett H, Hu B. Chaperone-mediated autophagy after traumatic brain injury. J Neurotrauma. 2015;32:1449–57.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305:1292–5.

    Article  CAS  PubMed  Google Scholar 

  26. Napolitano G, Johnson JL, He J, Rocca CJ, Monfregola J, Pestonjamasp K, et al. Impairment of chaperone-mediated autophagy leads to selective lysosomal degradation defects in the lysosomal storage disease cystinosis. EMBO Mol Med. 2015;7:158–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, et al. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev. 2022;102:815–57.

    Article  CAS  PubMed  Google Scholar 

  28. Kirchner P, Bourdenx M, Madrigal-Matute J, Tiano S, Diaz A, Bartholdy BA, et al. Correction: Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biol. 2022;20:e3001550.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wei Y, Miao Q, Zhang Q, Mao S, Li M, Xu X, et al. Aerobic glycolysis is the predominant means of glucose metabolism in neuronal somata, which protects against oxidative damage. Nat Neurosci. 2023;26:2081–9.

    Article  CAS  PubMed  Google Scholar 

  30. Xu M, Guo Y, Wang M, Luo X, Shen X, Li Z, et al. L-arginine homeostasis governs adult neural stem cell activation by modulating energy metabolism in vivo. EMBO J. 2023;42:e112647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang M, Lu H, Xie X, Shen H, Li X, Zhang Y, et al. TMEM175 mediates Lysosomal function and participates in neuronal injury induced by cerebral ischemia-reperfusion. Mol Brain. 2020;13:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ahsan A, Liu M, Zheng Y, Yan W, Pan L, Li Y, et al. Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sin B. 2021;11:1708–20.

    Article  CAS  PubMed  Google Scholar 

  33. Han B, Jiang W, Cui P, Zheng K, Dang C, Wang J, et al. Microglial PGC-1α protects against ischemic brain injury by suppressing neuroinflammation. Genome Med. 2021;13:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hwang I, Kim BS, Lee HY, Cho SW, Lee SE, Ahn JY. PA2G4/EBP1 ubiquitination by PRKN/PARKIN promotes mitophagy protecting neuron death in cerebral ischemia. Autophagy. 2024;20:365–79.

    Article  CAS  PubMed  Google Scholar 

  35. Hu M, Li P, Wang C, Feng X, Geng Q, Chen W, et al. Parkinson’s disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes. Cell. 2022;185:2292–2308.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Zeng W, Han Y, Lee WR, Liou J, Jiang Y. Lysosomal LAMP proteins regulate lysosomal pH by direct inhibition of the TMEM175 channel. Mol Cell. 2023;83:2524–2539.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50:1352–64.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M, Dohse M, et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature. 2019;574:428–31.

    Article  CAS  PubMed  Google Scholar 

  39. Neel DV, Basu H, Gunner G, Bergstresser MD, Giadone RM, Chung H, et al. Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration. Neuron. 2023;111:1222–1240.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karlowitz R, van Wijk SJL. Surviving death: Emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis. FEBS J. 2023;290:37–54.

    Article  CAS  PubMed  Google Scholar 

  41. Liu S, Liu H, Johnston A, Hanna-Addams S, Reynoso E, Xiang Y, et al. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis. Proc Natl Acad Sci USA. 2017;114:e7450–e7459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnston AN, Ma Y, Liu H, Liu S, Hanna-Addams S, Chen S, et al. Necroptosis-blocking compound NBC1 targets heat shock protein 70 to inhibit MLKL polymerization and necroptosis. Proc Natl Acad Sci USA. 2020;117:6521–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu S, Perez P, Sun X, Chen K, Fatirkhorani R, Mammadova J, et al. MLKL polymerization-induced lysosomal membrane permeabilization promotes necroptosis. Cell Death Differ. 2024;31:40–52.

    Article  CAS  PubMed  Google Scholar 

  44. Tummers B, Mari L, Guy CS, Heckmann BL, Rodriguez DA, Rühl S, et al. Caspase-8-dependent inflammatory responses are controlled by its adaptor, FADD, and necroptosis. Immunity. 2020;52:994–1006.e1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patzke C, Brockmann MM, Dai J, Gan KJ, Grauel MK, Fenske P, et al. Neuromodulator signaling bidirectionally controls vesicle numbers in human synapses. Cell. 2019;179:498–513.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao F, Yang S, Wang J, Zhu G. cAMP-PKA cascade: an outdated topic for depression? Biomed Pharmacother. 2022;150:113030.

    Article  CAS  PubMed  Google Scholar 

  47. Filous AR, Silver J. Targeting astrocytes in CNS injury and disease: a translational research approach. Prog Neurobiol. 2016;144:173–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Prescott K, Münch AE, Brahms E, Weigel MM, Inoue K, Buckwalter MS, et al. Blocking formation of neurotoxic reactive astrocytes is beneficial following stroke. Front Mol Neurosci. 2023;16:1305949.

    Article  CAS  PubMed  Google Scholar 

  49. Huerta M, Urzúa Z, Trujillo X, González-Sánchez R, Trujillo-Hernández B. Forskolin compared with beclomethasone for prevention of asthma attacks: a single-blind clinical trial. J Int Med Res. 2010;38:661–8.

    Article  CAS  PubMed  Google Scholar 

  50. Majeed M, Nagabhushanam K, Natarajan S, Vaidyanathan P, Karri SK, Jose JA. Efficacy and safety of 1% forskolin eye drops in open angle glaucoma-An open label study. Saudi J Ophthalmol. 2015;29:197–200.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nederveen JP, Mastrolonardo AJ, Xhuti D, Di Carlo A, Manta K, Fuda MR, et al. Novel multi-ingredient supplement facilitates weight loss and improves body composition in overweight and obese individuals: a randomized, double-blind, placebo-controlled clinical trial. Nutrients. 2023;15:3693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rundfeldt C, Steckel H, Sörensen T, Wlaź P. The stable cyclic adenosine monophosphate analogue, dibutyryl cyclo-adenosine monophosphate (bucladesine), is active in a model of acute skin inflammation. Arch Dermatol Res. 2012;304:313–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Caballero B, Bourdenx M, Luengo E, Diaz A, Sohn PD, Chen X, et al. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat Commun. 2021;12:2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuo SH, Tasset I, Cheng MM, Diaz A, Pan MK, Lieberman OJ, et al. Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy. Sci Adv. 2022;8:eabm6393.

    Article  CAS  PubMed  Google Scholar 

  55. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32:1005–11.

    Article  CAS  PubMed  Google Scholar 

  56. Xu Y, Wang ML, Tao H, Geng C, Guo F, Hu B, et al. ErbB4 in parvalbumin-positive interneurons mediates proactive interference in olfactory associative reversal learning. Neuropsychopharmacology. 2022;47:1292–303.

    Article  CAS  PubMed  Google Scholar 

  57. Du CP, Gao J, Tai JM, Liu Y, Qi J, Wang W, et al. Increased tyrosine phosphorylation of PSD-95 by Src family kinases after brain ischaemia. Biochem J. 2009;417:277–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Ms. Jie Zhao (Animal Experimental Center of Public Experimental Platform, China Pharmaceutical University) for her assistance with behavioral experiments.

Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 82173801 and 81673418).

Author information

Authors and Affiliations

Authors

Contributions

D.S., Y.B. performed biochemical and molecular biology experiments, lysosomal isolation and substrate analysis. R.L. and M.D. performed quantitative proteomic analysis. D.S., J.X. and W.X. performed experiments on primary neurons. D.S., Y.B., D.Q. and X.Y. performed neurofunctional assessment and behavioral experiments. D.S., Y.B. and R.L. conducted data analysis and visualization. M.D. and X.Y.H. planned the experimental design. X.Y.H. conceived and supervised the project. D.S., W.X. and X.Y.H. wrote the paper with feedback from all authors.

Corresponding authors

Correspondence to Ming Ding or Xiao-Yu Hou.

Ethics declarations

Ethics

All experiments were approved by the Institutional Animal Care and Use Committee of China Pharmaceutical University and were conducted in accordance with the ARRIVE guidelines.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Bai, Y., Long, R. et al. Neuronal LAMP2A-mediated reduction of adenylyl cyclases induces acute neurodegenerative responses and neuroinflammation after ischemic stroke. Cell Death Differ 32, 337–352 (2025). https://doi.org/10.1038/s41418-024-01389-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-024-01389-0

This article is cited by

Search

Quick links