Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

USP19 potentiates autophagic cell death via inhibiting mTOR pathway through deubiquitinating NEK9 in pancreatic cancer

Abstract

The ubiquitin-specific protease (USP) family is the largest and most diverse deubiquitinase (DUBs) family and plays a significant role in maintaining cell homeostasis. Dysregulation of USPs has been associated with carcinogenesis of various tumors. We identified that USP19 was downregulated in pancreatic tumor tissues and forced expression of USP19 diminished tumorigenicity of pancreatic cancer. Mechanistically, USP19 directly interacts with and stabilized NEK9 via inhibiting K48-specific polyubiquitination process on NEK9 protein at K525 site through its USP ___domain. Moreover, NEK9 phosphorylates the regulatory associated protein of mTOR (Raptor) at Ser792 and links USP19 to the inhibition of mTORC1 signaling pathway, which further leads to autophagic cell death of pancreatic cancer cells. Inhibition of autophagy by Atg5 knockdown or lysosome inhibitor bafilomycin A1 abolished the decreased malignant phenotype of USP19- and NEK9-overexpressing cancer cells. Importantly, USP19 expression exhibits a positive correlation with NEK9 expression in clinical samples, and low USP19 or NEK9 expression is associated with a worse prognosis. This study revealed that USP19-mediated NEK9 deubiquitylation is a regulatory mechanism for mTORC1 inhibition and provides a therapeutic target for diseases involving mTORC1 dysregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: USP19 is downregulated in pancreatic cancer and related with a worse prognosis.
Fig. 2: Inhibitory effects of USP19 on proliferation and metastasis of pancreatic cancer cells.
Fig. 3: USP19 binds to and inhibits NEK9 degradation.
Fig. 4: Effects of USP19 on ubiquitination of NEK9.
Fig. 5: USP19 inhibits pancreatic cancer proliferation and metastasis through interacting with and stabling NEK9.
Fig. 6: USP19/NEK9 cascade inhibited Warburg effect and activated autophagy pathway.
Fig. 7: NEK9 binds to and promotes Raptor phosphorylation at Ser792.

Similar content being viewed by others

Data availability

All datasets are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  2. Kitamura H. Ubiquitin-specific proteases (USPs) and metabolic disorders. Int J Mol Sci. 2023;24:3219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonacci T, Emanuele MJ. Dissenting degradation: deubiquitinases in cell cycle and cancer. Semin Cancer Biol. 2020;67:145–58.

  4. Jin S, Tian S, Chen Y, Zhang C, Xie W, Xia X, et al. USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1. EMBO J. 2016;35:866–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu Y, Gu L, Lin X, Zhou X, Lu B, Liu C, et al. USP19 exacerbates lipogenesis and colorectal carcinogenesis by stabilizing ME1. Cell Rep. 2021;37:110174.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Chen X, Qian F, Zhu Y, He G, Yang J, et al. Deubiquitinase USP19 modulates apoptotic calcium release and endoplasmic reticulum stress by deubiquitinating BAG6 in triple negative breast cancer. Clin Transl Med. 2023;13:e1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42.

    Article  CAS  PubMed  Google Scholar 

  8. Yamamoto Y, Chino H, Tsukamoto S, Ode KL, Ueda HR, Mizushima N. NEK9 regulates primary cilia formation by acting as a selective autophagy adaptor for MYH9/myosin IIA. Nat Commun. 2021;12:3292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature. 2010;466:68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shrestha BK, Skytte Rasmussen M, Abudu YP, Bruun JA, Larsen KB, Alemu EA, et al. NIMA-related kinase 9-mediated phosphorylation of the microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of p62/sequestosome 1. J Biol Chem. 2020;295:1240–60.

    Article  PubMed  Google Scholar 

  11. Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther. 2023;8:375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol. 2020;21:439–58.

    Article  CAS  PubMed  Google Scholar 

  13. Ding WX, Ma X, Kim S, Wang S, Ni HM. Recent insights about autophagy in pancreatitis. eGastroenterology. 2024;2:e100057.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hernandez GA, Perera RM. Autophagy in cancer cell remodeling and quality control. Mol Cell. 2022;82:1514–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang Y, Zhang Y, Gao J, Xu W, Xu Z, Li Z, et al. Pyrethrum extract induces oxidative DNA damage and AMPK/mTOR-mediated autophagy in SH-SY5Y cells. Sci Total Environ. 2020;740:139925.

    Article  CAS  PubMed  Google Scholar 

  16. Liu W, Zhao Y, Wang G, Feng S, Ge X, Ye W, et al. TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ROS/AMPK/mTOR/autophagy signaling. Redox Biol. 2022;53:102344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jia S, Xu X, Zhou S, Chen Y, Ding G, Cao L. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways. Cell Death Dis. 2019;10:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Szwed A, Kim E, Jacinto E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol Rev. 2021;101:1371–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang G, Gao H, Dai S, Li M, Gao Y, Yin L, et al. Metformin inhibits neutrophil extracellular traps-promoted pancreatic carcinogenesis in obese mice. Cancer Lett. 2023;562:216155.

    Article  CAS  PubMed  Google Scholar 

  20. Wang G, Yin L, Peng Y, Gao Y, Gao H, Zhang J, et al. Insulin promotes invasion and migration of KRAS(G12D) mutant HPNE cells by upregulating MMP-2 gelatinolytic activity via ERK- and PI3K-dependent signalling. Cell Prolif. 2019;52:e12575.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bononi G, Masoni S, Di Bussolo V, Tuccinardi T, Granchi C, Minutolo F. Historical perspective of tumor glycolysis: a century with Otto Warburg. Semin Cancer Biol. 2022;86:325–33.

  22. Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345:1250684.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Weng ML, Chen WK, Chen XY, Lu H, Sun ZR, Yu Q, et al. Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1alpha pathway suppression. Nat Commun. 2020;11:1869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39:171–83.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Perl A. mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging. Ann N Y Acad Sci. 2015;1346:33–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan H, Wu Y, Yu S, Li X, Wang A, Wang S, et al. Critical role of mTOR in regulating aerobic glycolysis in carcinogenesis (Review). Int J Oncol. 2021;58:9–19.

    Article  CAS  PubMed  Google Scholar 

  27. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chandrasekaran AP, Tyagi A, Poondla N, Sarodaya N, Karapurkar JK, Kaushal K, et al. Dual role of deubiquitinating enzyme USP19 regulates mitotic progression and tumorigenesis by stabilizing survivin. Mol Ther. 2022;30:3414–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tyagi A, Karapurkar JK, Colaco JC, Sarodaya N, Antao AM, Kaushal K, et al. USP19 negatively regulates p53 and promotes cervical cancer progression. Mol Biotechnol. 2023;66:2032–45.

  30. Hu W, Su Y, Fei X, Wang X, Zhang G, Su C, et al. Ubiquitin specific peptidase 19 is a prognostic biomarker and affect the proliferation and migration of clear cell renal cell carcinoma. Oncol Rep. 2020;43:1964–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bertran MT, Sdelci S, Regue L, Avruch J, Caelles C, Roig J. Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. EMBO J. 2011;30:2634–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu G, Du R, Dong J, Sun Y, Zhou F, Feng F, et al. Cancer associated fibroblast derived SLIT2 drives gastric cancer cell metastasis by activating NEK9. Cell Death Dis. 2023;14:421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu G, Tian S, Sun Y, Dong J, Wang N, Zeng J, et al. NEK9, a novel effector of IL-6/STAT3, regulates metastasis of gastric cancer by targeting ARHGEF2 phosphorylation. Theranostics. 2021;11:2460–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao WL, Niu L, Chen WL, Zhang YQ, Huang WH. Integrative analysis of the expression levels and prognostic Values for NEK family members in breast cancer. Front Genet. 2022;13:798170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nie H, Huang PQ, Jiang SH, Yang Q, Hu LP, Yang XM, et al. The short isoform of PRLR suppresses the pentose phosphate pathway and nucleotide synthesis through the NEK9-Hippo axis in pancreatic cancer. Theranostics. 2021;11:3898–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu Y, Wang X, Zhu W, Sui Z, Wei X, Zhang Y, et al. TRPML1-induced autophagy inhibition triggers mitochondrial mediated apoptosis. Cancer Lett. 2022;541:215752.

    Article  CAS  PubMed  Google Scholar 

  37. Sang J, Gan L, Zou MF, Lin ZJ, Fan RZ, Huang JL, et al. Jolkinolide B sensitizes bladder cancer to mTOR inhibitors via dual inhibition of Akt signaling and autophagy. Cancer Lett. 2022;526:352–62.

    Article  CAS  PubMed  Google Scholar 

  38. Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, et al. Autophagy and multidrug resistance in cancer. Chin J Cancer. 2017;36:52.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Denton D, Kumar S. Autophagy-dependent cell death. Cell Death Differ. 2019;26:605–16.

    Article  CAS  PubMed  Google Scholar 

  40. Cui J, Jin S, Wang RF. The BECN1-USP19 axis plays a role in the crosstalk between autophagy and antiviral immune responses. Autophagy. 2016;12:1210–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao X, Di Q, Yu J, Quan J, Xiao Y, Zhu H, et al. USP19 (ubiquitin specific peptidase 19) promotes TBK1 (TANK-binding kinase 1) degradation via chaperone-mediated autophagy. Autophagy. 2022;18:891–908.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grant from the Natural Science Foundation of Jiangsu Province (BK20221416), Clinical Science and Technology Climbing program - “Spark” basic research project (ZJ202124), Young Scholars Fostering Fund of the First Affiliated Hospital of Nanjing Medical University (PY202404) and Innovation Capability Development Project of Jiangsu Province (No. BM2015004). All samples used in current study were obtained from Pancreas Biobank, The First Affiliated Hospital with Nanjing Medical University, which is a part of Jiangsu Biobank of Clinical Resource.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: GFW; data acquisition, analysis, and interpretation: GFW, SND, JC, KZ; investigation: GFW, SND, JC, KZ, JFZ, FYL, HJW; methodology: KZ, ZPL, CYH, LDY; acquisition of patient specimens: JFZ, KXX, FYL, HJW, YG; supervision: ZPL, YM, KRJ; resources: ZPL, YM, JC; and article drafting and revising: GFW, SND. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Kuirong Jiang, Yi Miao or Zipeng Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics statement and consent to participate

All participants provided informed consent. All human tissue research in this study had the approval of ethics committees of the First Affiliated Hospital of Nanjing Medical University (Nanjing, China). All animal experiments were performed in accordance with a protocol approved by the Institutional Animal Care and Use Committee of the Nanjing Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Dai, S., Chen, J. et al. USP19 potentiates autophagic cell death via inhibiting mTOR pathway through deubiquitinating NEK9 in pancreatic cancer. Cell Death Differ 32, 702–713 (2025). https://doi.org/10.1038/s41418-024-01426-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-024-01426-y

Search

Quick links