Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-33 released during challenge phase regulates allergic asthma in an age-dependent way

Abstract

Epithelial-derived cytokines, especially type 2 alarmins (TSLP, IL-25, and IL-33), have emerged as critical mediators of type 2 inflammation. IL-33 attracts more interest for its strong association with allergic asthma, especially in childhood asthma. However, the age-dependent role of IL-33 to the development of allergic asthma remains elusive. Here, using OVA-induced allergic asthma model in neonatal and adult mice, we report that IL-33 is the most important alarmin in neonatal lung both at steady state or inflammation. The deficiency of IL-33/ST2 abrogated the development of allergic asthma only in neonates, whereas in adults the effect was limited. Interestingly, the deficiency of IL-33/ST2 equally dampened the ILC2 responses in both neonatal and adult models. However, the effect of IL-33/ST2 deficiency on Th2 responses is age-dependent, which is only blocked in neonates. Furthermore, IL-33/ST2 signaling is dispensable for OVA sensitization. Following OVA challenge in adults, the deficiency of IL-33/ST2 results in compensational more TSLP, which in turn recruits and activates lung DCs and boosts Th2 responses. The enriched γδ T17 cells in IL-33/ST2 deficient neonatal lung suppress the expression of type 2 alarmins, CCL20 and GM-CSF via IL-17A, thus might confer the inhibition of allergic asthma. Finally, on the basis of IL-33 deficiency, the additive protective effects of TSLP blocking is much more pronounced than IL-25 blocking in adults. Our studies demonstrate that the role of IL-33 for ILC2 and Th2 responses varies among ages in OVA models and indicate that the factor of age should be considered for intervention of asthma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021;184:1469–85.

    Article  CAS  PubMed  Google Scholar 

  2. Ödling M, Andersson N, Ekström S, Melén E, Bergström A, Kull I. Characterization of asthma in the adolescent population. Allergy. 2018;73:1744–6.

    Article  PubMed  Google Scholar 

  3. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16:45–56.

    Article  CAS  PubMed  Google Scholar 

  4. Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, et al. Cellular and molecular mechanisms of allergic asthma. Mol Asp Med. 2022;85:100995.

    Article  Google Scholar 

  5. Rodriguez-Rodriguez N, Gogoi M, McKenzie ANJ. Group 2 Innate Lymphoid Cells: Team Players in Regulating Asthma. Annu Rev Immunol. 2021;39:167–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hammad H, Lambrecht BN. Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity. 2015;43:29–40.

    Article  CAS  PubMed  Google Scholar 

  7. Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol. 2020;145:1499–509.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More Than Just a Barrier: The Immune Functions of the Airway Epithelium in Asthma Pathogenesis. Front Immunol. 2020;11:761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bønnelykke K, Sleiman P, Nielsen K, Kreiner-Møller E, Mercader JM, Belgrave D, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014;46:51–55.

    Article  PubMed  Google Scholar 

  10. Grotenboer NS, Ketelaar ME, Koppelman GH, Nawijn MC. Decoding asthma: translating genetic variation in IL33 and IL1RL1 into disease pathophysiology. J Allergy Clin Immunol. 2013;131:856–65.

    Article  CAS  PubMed  Google Scholar 

  11. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl J Med. 2010;363:1211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Savenije OE, Mahachie John JM, Granell R, Kerkhof M, Dijk FN, de Jongste JC, et al. Association of IL33-IL-1 receptor-like 1 (IL1RL1) pathway polymorphisms with wheezing phenotypes and asthma in childhood. J Allergy Clin Immunol. 2014;134:170–7.

    Article  CAS  PubMed  Google Scholar 

  13. Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol. 2016;16:676–89.

    Article  CAS  PubMed  Google Scholar 

  14. Humphreys NE, Xu D, Hepworth MR, Liew FY, Grencis RK. IL-33, a potent inducer of adaptive immunity to intestinal nematodes. J Immunol (Baltim, Md : 1950). 2008;180:2443–9.

    Article  CAS  Google Scholar 

  15. Calise J, Garabatos N, Bajzik V, Farrington M, Robinson D, Jeong D, et al. Optimal human pathogenic T(H)2 cell effector function requires local epithelial cytokine signaling. J Allergy Clin Immunol. 2021;148:867–75.e864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hong H, Liao S, Chen F, Yang Q, Wang DY. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy. 2020;75:2794–804.

    Article  CAS  PubMed  Google Scholar 

  17. Hoshino K, Kashiwamura S, Kuribayashi K, Kodama T, Tsujimura T, Nakanishi K, et al. The absence of interleukin 1 receptor-related T1/ST2 does not affect T helper cell type 2 development and its effector function. J Exp Med. 1999;190:1541–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oboki K, Ohno T, Kajiwara N, Arae K, Morita H, Ishii A, et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci USA. 2010;107:18581–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saluzzo S, Gorki AD, Rana B, Martins R, Scanlon S, Starkl P, et al. First-Breath-Induced Type 2 Pathways Shape the Lung Immune Environment. Cell Rep. 2017;18:1893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ebina-Shibuya R, Leonard WJ. Role of thymic stromal lymphopoietin in allergy and beyond. Nat Rev Immunol. 2023;23:24–37.

    Article  CAS  PubMed  Google Scholar 

  21. Leyva-Castillo JM, Hener P, Michea P, Karasuyama H, Chan S, Soumelis V, Li M. Skin thymic stromal lymphopoietin initiates Th2 responses through an orchestrated immune cascade. Nat Commun. 2013;4:2847.

    Article  PubMed  Google Scholar 

  22. Toki S, Goleniewska K, Zhang J, Zhou W, Newcomb DC, Zhou B, et al. TSLP and IL-33 reciprocally promote each other’s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy. 2020;75:1606–17.

    Article  CAS  PubMed  Google Scholar 

  23. Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol. 2021;148:40–52.

    Article  CAS  PubMed  Google Scholar 

  24. Gregory LG, Jones CP, Walker SA, Sawant D, Gowers KH, Campbell GA, et al. IL-25 drives remodelling in allergic airways disease induced by house dust mite. Thorax. 2013;68:82–90.

    Article  PubMed  Google Scholar 

  25. Lambrecht BN, Hammad H, Fahy JV. The Cytokines of Asthma. Immunity. 2019;50:975–91.

    Article  CAS  PubMed  Google Scholar 

  26. Calderon AA et al. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD. Eur Resp Rev: Off J Eur Resp Soc. 2023;32:220144.

  27. Porsbjerg CM, Sverrild A, Lloyd CM, Menzies-Gow AN, Bel EH Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics. Eur Resp J. 2020;56:2000260.

  28. Salter B, Lacy P, Mukherjee M. Biologics in Asthma: A Molecular Perspective to Precision Medicine. Front Pharmacol. 2021;12:793409.

    Article  CAS  PubMed  Google Scholar 

  29. Diver S, Khalfaoui L, Emson C, Wenzel SE, Menzies-Gow A, Wechsler ME, et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2 trial. The Lancet. Respiratory Med. 2021;9:1299–312.

    CAS  Google Scholar 

  30. Ishizuka T, Menzies-Gow A, Okada H, Fukushima Y, Hayashi N, Colice G, et al. Efficacy and safety of tezepelumab in patients recruited in Japan who participated in the phase 3 NAVIGATOR study. Allergol Int. 2023;72:82–88.

    Article  CAS  PubMed  Google Scholar 

  31. Kosloski MP, Kalliolias GD, Xu CR, Harel S, Lai CH, Zheng W, et al. Pharmacokinetics and pharmacodynamics of itepekimab in healthy adults and patients with asthma: Phase I first-in-human and first-in-patient trials. Clin Transl Sci. 2022;15:384–95.

    Article  CAS  PubMed  Google Scholar 

  32. Wechsler ME, Ruddy MK, Pavord ID, Israel E, Rabe KF, Ford LB, et al. Efficacy and Safety of Itepekimab in Patients with Moderate-to-Severe Asthma. N. Engl J Med. 2021;385:1656–68.

    Article  CAS  PubMed  Google Scholar 

  33. Kelsen SG, Agache IO, Soong W, Israel E, Chupp GL, Cheung DS, et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: A randomized clinical trial. J Allergy Clin Immunol. 2021;148:790–8.

    Article  CAS  PubMed  Google Scholar 

  34. Akar-Ghibril N, Casale T, Custovic A, Phipatanakul W. Allergic Endotypes and Phenotypes of Asthma. J Allergy Clin Immunol Pr. 2020;8:429–40.

    Article  Google Scholar 

  35. Conrad LA, Cabana MD, Rastogi D. Defining pediatric asthma: phenotypes to endotypes and beyond. Pediatr Res. 2021;90:45–51.

    Article  PubMed  Google Scholar 

  36. Taunk ST, Cardet JC, Ledford DK. Clinical implications of asthma endotypes and phenotypes. Allergy asthma Proc. 2022;43:375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Kleer IM, Kool M, de Bruijn MJ, Willart M, van Moorleghem J, Schuijs MJ, et al. Perinatal Activation of the Interleukin-33 Pathway Promotes Type 2 Immunity in the Developing Lung. Immunity. 2016;45:1285–98.

    Article  PubMed  Google Scholar 

  38. Van Dyken SJ, Nussbaum JC, Lee J, Molofsky AB, Liang HE, Pollack JL, et al. A tissue checkpoint regulates type 2 immunity. Nat Immunol. 2016;17:1381–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gurram RK, Zhu J. Orchestration between ILC2s and Th2 cells in shaping type 2 immune responses. Cell Mol Immunol. 2019;16:225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Walker JA, McKenzie ANJ. T(H)2 cell development and function. Nat Rev Immunol. 2018;18:121–33.

    Article  CAS  PubMed  Google Scholar 

  41. Akkoc T, O’Mahony L, Ferstl R, Akdis C, Akkoc T. Mouse Models of Asthma: Characteristics, Limitations and Future Perspectives on Clinical Translation. Adv Exp Med Biol. 2022;1376:119–33.

    Article  CAS  PubMed  Google Scholar 

  42. Foster PS, Maltby S, Rosenberg HF, Tay HL, Hogan SP, Collison AM, et al. Modeling T(H) 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunological Rev. 2017;278:20–40.

    Article  CAS  Google Scholar 

  43. Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol. 2020;17:587–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol. 2008;8:193–204.

    Article  CAS  PubMed  Google Scholar 

  45. Worbs T, Hammerschmidt SI, Förster R. Dendritic cell migration in health and disease. Nat Rev Immunol. 2017;17:30–48.

    Article  CAS  PubMed  Google Scholar 

  46. Izumi G, Nakano H, Nakano K, Whitehead GS, Grimm SA, Fessler MB, et al. CD11b(+) lung dendritic cells at different stages of maturation induce Th17 or Th2 differentiation. Nat Commun. 2021;12:5029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived cytokines: more than just signaling the alarm. J Clin Invest. 2019;129:1441–51.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21:739–51.

    Article  CAS  PubMed  Google Scholar 

  49. Akdis CA. The epithelial barrier hypothesis proposes a comprehensive understanding of the origins of allergic and other chronic noncommunicable diseases. J Allergy Clin Immunol. 2022;149:41–44.

    Article  PubMed  Google Scholar 

  50. Ahmadi M, Fathi F, Fouladi S, Alsahebfosul F, Manian M, Eskandari N. Serum IL-33 Level and IL-33, IL1RL1 Gene Polymorphisms in Asthma and Multiple Sclerosis Patients. Curr Mol Med. 2019;19:357–63.

    Article  CAS  PubMed  Google Scholar 

  51. Bahrami Mahneh S, Movahedi M, Aryan Z, Bahar MA, Rezaei A, Sadr M, et al. Serum IL-33 Is Elevated in Children with Asthma and Is Associated with Disease Severity. Int Arch allergy Immunol. 2015;168:193–6.

    Article  CAS  PubMed  Google Scholar 

  52. Chen K, Eddens T, Trevejo-Nunez G, Way EE, Elsegeiny W, Ricks DM, et al. IL-17 Receptor Signaling in the Lung Epithelium Is Required for Mucosal Chemokine Gradients and Pulmonary Host Defense against K. pneumoniae. Cell Host Microbe. 2016;20:596–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Garg AV, Ahmed M, Vallejo AN, Ma A, Gaffen SL. The deubiquitinase A20 mediates feedback inhibition of interleukin-17 receptor signaling. Sci Signal. 2013;6:ra44.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Catrysse L, Vereecke L, Beyaert R, van Loo G. A20 in inflammation and autoimmunity. Trends Immunol. 2014;35:22–31.

    Article  CAS  PubMed  Google Scholar 

  55. Schuijs MJ, Willart MA, Vergote K, Gras D, Deswarte K, Ege MJ, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Sci (N. Y, N. Y.). 2015;349:1106–10.

    Article  CAS  Google Scholar 

  56. Guo Xi-zhi J, Dash P, Crawford JC, Allen EK, Zamora AE, Boyd, DF, et al. Lung γδ T Cells Mediate Protective Responses during Neonatal Influenza Infection that Are Associated with Type 2 Immunity. Immunity 2018;49:531–544.e6 https://doi.org/10.1016/j.immuni.2018.07.011

  57. Camelo A, Rosignoli G, Ohne Y, Stewart RA, Overed-Sayer C, Sleeman MA, May RD. IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv. 2017;1:577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Starkey MR, McKenzie AN, Belz GT, Hansbro PM. Pulmonary group 2 innate lymphoid cells: surprises and challenges. Mucosal Immunol. 2019;12:299–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thio CL, Chang YJ. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: from inflammatory mediators to environmental and metabolic factors. Exp Mol Med. 2023;55:1872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou L, Lin Q, Sonnenberg GF. Metabolic control of innate lymphoid cells in health and disease. Nat Metab. 2022;4:1650–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stanbery AG, Shuchi S, Jakob von M. Tait Wojno, E.D. & Ziegler, S.F. TSLP, IL-33, and IL-25: Not just for allergy and helminth infection. J Allergy Clin Immunol. 2022;150:1302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barlow JL, Peel S, Fox J, Panova V, Hardman CS, Camelo A, et al. IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction. J Allergy Clin Immunol. 2013;132:933–41.

    Article  CAS  PubMed  Google Scholar 

  63. Nakanishi W, Yamaguchi S, Matsuda A, Suzukawa M, Shibui A, Nambu A, et al. IL-33, but not IL-25, is crucial for the development of house dust mite antigen-induced allergic rhinitis. PloS one. 2013;8:e78099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kool M, Soullié T, van Nimwegen M, Willart MA, Muskens F, Jung S, et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med. 2008;205:869–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vroman H, Hendriks RW, Kool M. Dendritic Cell Subsets in Asthma: Impaired Tolerance or Exaggerated Inflammation? Front Immunol. 2017;8:941.

    Article  PubMed  PubMed Central  Google Scholar 

  66. van Rijt LS, Jung S, Kleinjan A, Vos N, Willart M, Duez C, et al. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med. 2005;201:981–91.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gurram RK, Wei D, Yu Q, Butcher MJ, Chen X, Cui K, et al. Crosstalk between ILC2s and Th2 cells varies among mouse models. Cell Rep. 2023;42:112073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Allinne J, Scott G, Lim WK, Birchard D, Erjefält JS, Sandén C, et al. IL-33 blockade affects mediators of persistence and exacerbation in a model of chronic airway inflammation. J Allergy Clin Immunol. 2019;144:1624–37.e1610.

    Article  CAS  PubMed  Google Scholar 

  69. Lee HY, Lee HY, Hur J, Kang HS, Choi JY, Rhee CK, et al. Blockade of thymic stromal lymphopoietin and CRTH2 attenuates airway inflammation in a murine model of allergic asthma. Korean J Intern Med. 2020;35:619–29.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhou B, Comeau MR, De Smedt T, Liggitt HD, Dahl ME, Lewis DB, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol. 2005;6:1047–53.

    Article  CAS  PubMed  Google Scholar 

  71. An G, Wang W, Zhang X, Huang Q, Li Q, Chen S, et al. Combined blockade of IL-25, IL-33 and TSLP mediates amplified inhibition of airway inflammation and remodelling in a murine model of asthma. Respirol (Carlton, Vic). 2020;25:603–12.

    Article  Google Scholar 

  72. Ballantyne SJ, Barlow JL, Jolin HE, Nath P, Williams AS, Chung KF, et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J Allergy Clin Immunol. 2007;120:1324–31.

    Article  CAS  PubMed  Google Scholar 

  73. Xiao Y, Lai L, Chen H, Shi J, Zeng F, Li J, et al. Interleukin-33 deficiency exacerbated experimental autoimmune encephalomyelitis with an influence on immune cells and glia cells. Mol Immunol. 2018;101:550–63.

    Article  CAS  PubMed  Google Scholar 

  74. Townsend MJ, Fallon PG, Matthews DJ, Jolin HE, McKenzie AN. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J Exp Med. 2000;191:1069–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu M, Gao L, He M, Liu H, Jiang H, Shi K, et al. Plasmacytoid dendritic cell deficiency in neonates enhances allergic airway inflammation via reduced production of IFN-α. Cell Mol Immunol. 2020;17:519–32.

    Article  PubMed  Google Scholar 

  76. Debeuf N, Haspeslagh E, van Helden M, Hammad H, Lambrecht BN. Mouse Models of Asthma. Curr Protoc mouse Biol. 2016;6:169–84.

    Article  PubMed  Google Scholar 

  77. Haspeslagh E, Debeuf N, Hammad H, Lambrecht BN. Murine Models of Allergic Asthma. Methods Mol Biol (Clifton, N. J). 2017;1559:121–36.

    Article  CAS  Google Scholar 

  78. Goplen N, Karim MZ, Liang Q, Gorska MM, Rozario S, Guo L, Alam R. Combined sensitization of mice to extracts of dust mite, ragweed, and Aspergillus species breaks through tolerance and establishes chronic features of asthma. J Allergy Clin Immunol. 2009;123:925–32.e911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks for the technical support by the Huazhong University of Science and Technology Analytical & Testing center, Medical sub-center. Thanks for the support of animal experiments and FACS experiments by Innovation and Research Center, Tongji Medical College, HUST. Thanks for the technical support by the Laboratory Animal Center, Huazhong University of Science and Technology. This work was supported in part by grants from the National Natural Science Foundation of China (grant 31970865) to J.H., and by the Postdoctoral Fellowship Program of CPSF under Grant Number GZC20241497 to M.W.

Author information

Authors and Affiliations

Authors

Contributions

H.L., M.W., Y.H. and J.H. conceived the idea, designed the experiments, and composed the paper. H.L. and M.W. conducted all the experiments; Q.W., L.G. and H.J. assisted in animal experiments; Y.L., J.Z. and J.H. assisted in flow cytometry analysis; S.Q. and Y.Z. assisted in cell culture and in vitro experiments; H.L., M.W., F.Z., Y.H. and J.H. contributed to the interpretation of the results. Y.H. and J.H. supervised the project.

Corresponding authors

Correspondence to Yafei Huang or Junyan Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wu, M., Wang, Q. et al. IL-33 released during challenge phase regulates allergic asthma in an age-dependent way. Cell Mol Immunol 22, 191–207 (2025). https://doi.org/10.1038/s41423-024-01205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-024-01205-2

Keywords

Search

Quick links