Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-cohort analysis identifying core ocular surface microbiome and bacterial alterations in eye diseases

Abstract

Purpose

Inconsistency exists among reported studies on the composition of human ocular surface microbiome (OSM). The roles of OSM in ocular diseases remain uncertain. In this study, we aimed to determine the composition of OSM and to evaluate its potential roles and functions from multiple cohorts.

Methods

Raw 16 s sequencing data were obtainable from publicly available repositories, sourced from 17 published studies. Employing a standardized method, we processed the data and conducted a cross-cohort analysis. Through bioinformatics pipelines QIIME2 and PICRUSt2, we processed a total of 1875 ocular surface samples. Core microbiome analyses, genera comparisons, and MetaCyc pathway analyses were performed within each cohort independently. The results were then combined to identify shared patterns across different datasets.

Results

The core OSM comprised seven genera: Corynebacterium, Staphylococcus, Acinetobacter, Streptococcus, Pseudomonas, Cutibacterium and Bacillus. Corynebacterium and Staphylococcus are the most abundant genera on ocular surface. Most ocular diseases showed OSM alterations and eight genera demonstrated a non-specific, shared response among two or more ocular diseases. Moreover, changes in various metabolic pathways were predicted following OSM alteration, indicating potential roles of OSM in biological processes.

Conclusion

We refined the core OSM candidates combining multiple cohorts. The common pattern shared by different cohorts is worth further investigation. Changes in metabolic pathways based on bioinformatic analysis indicated a role of OSM on ocular diseases. Our results help extend the knowledge and encourage further investigations on the associations between OSM and ocular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diversity of microbiome composition in healthy participants.
Fig. 2: Core microbiome identified across 17 cohorts.
Fig. 3: Microbial response to ocular diseases.
Fig. 4: Metabolic pathway prediction of OSM by PICRUSt2.

Similar content being viewed by others

Data availability

Raw sequencing data for each study is accessible as described in Supplementary Table 1. Our re-analysed OTU/ASV tables are available at: https://github.com/ficion1/meta-analysis-of-OSM. Our study can be reproduced using these files. Supplementary files include tables showing the prevalence rates of core microbiomes and the q-values of univariate comparisons for each dataset. All other relevant data supporting the study findings are available in this article and its supplementary files, as well as from the corresponding author upon request.

References

  1. Petrillo F, Pignataro D, Lavano MA, Santella B, Folliero V, Zannella C, et al. Current Evidence on the Ocular Surface Microbiota and Related Diseases. Microorganisms. 2020;8:1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aragona P, Baudouin C, Benitez Del Castillo JM, Messmer E, Barabino S, Merayo-Lloves J, et al. The ocular microbiome and microbiota and their effects on ocular surface pathophysiology and disorders. Surv Ophthalmol. 2021;66:907–25.

    Article  PubMed  Google Scholar 

  3. Cavuoto KM, Banerjee S, Galor A. Relationship between the microbiome and ocular health. Ocul Surf. 2019;17:384–92.

    Article  PubMed  Google Scholar 

  4. St Leger AJ, Desai JV, Drummond RA, Kugadas A, Almaghrabi F, Silver P, et al. An Ocular Commensal Protects against Corneal Infection by Driving an Interleukin-17 Response from Mucosal gammadelta T Cells. Immunity. 2017;47:148–58e145.

    Article  PubMed Central  Google Scholar 

  5. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465:346–9.

    Article  CAS  PubMed  Google Scholar 

  6. Kugadas A, Christiansen SH, Sankaranarayanan S, Surana NK, Gauguet S, Kunz R, et al. Impact of Microbiota on Resistance to Ocular Pseudomonas aeruginosa-Induced Keratitis. PLoS Pathog. 2016;12:e1005855.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Momose Y, Hirayama K, Itoh K. Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie Van Leeuwenhoek. 2008;94:165–71.

    Article  CAS  PubMed  Google Scholar 

  8. Molloy MJ, Bouladoux N, Belkaid Y. Intestinal microbiota: shaping local and systemic immune responses. Semin Immunol. 2012;24:58–66.

    Article  CAS  PubMed  Google Scholar 

  9. Graham JE, Moore JE, Jiru X, Moore JE, Goodall EA, Dooley JS, et al. Ocular pathogen or commensal: a PCR-based study of surface bacterial flora in normal and dry eyes. Invest Ophthalmol Vis Sci. 2007;48:5616–23.

    Article  PubMed  Google Scholar 

  10. Liborio AM, Nishiwaki-Dantas MC, Mimica LM, Dantas PE, Lima AL. [Conjunctival microbiota in patients with ocular allergy]. Arq Bras Oftalmol. 2005;68:824–7.

    Article  PubMed  Google Scholar 

  11. Tuzhikov A, Dong Q, Panchin A, Thanathanee O, Shalabi N, Nelson D, et al. Keratitis-induced changes to the homeostatic microbiome at the human cornea. Investigative Ophthalmol Vis Sci. 2013;54:2891–91.

    Google Scholar 

  12. Zhou Y, Holland MJ, Makalo P, Joof H, Roberts CH, Mabey DC, et al. The conjunctival microbiome in health and trachomatous disease: a case control study. Genome Med. 2014;6:99.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martins EN, Alvarenga LS, Hofling-Lima AL, Freitas D, Zorat-Yu MC, Farah ME, et al. Aerobic bacterial conjunctival flora in diabetic patients. Cornea. 2004;23:136–42.

    Article  CAS  PubMed  Google Scholar 

  14. Ozkan J, Nielsen S, Diez-Vives C, Coroneo M, Thomas T, Willcox M. Temporal Stability and Composition of the Ocular Surface Microbiome. Sci Rep. 2017;7:9880.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huang Y, Yang B, Li W. Defining the normal core microbiome of conjunctival microbial communities. Clin Microbiol Infect. 2016;22:643.e7–643.e12.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Z, Zou X, Xue W, Zhang P, Wang S, Zou H. Ocular Surface Microbiota in Diabetic Patients With Dry Eye Disease. Invest Ophthalmol Vis Sci. 2021;62:13.

    PubMed  PubMed Central  Google Scholar 

  17. Ozkan J, Willcox MD. The Ocular Microbiome: Molecular Characterisation of a Unique and Low Microbial Environment. Curr Eye Res. 2019;44:685–94.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wen X, Miao L, Deng Y, Bible PW, Hu X, Zou Y, et al. The Influence of Age and Sex on Ocular Surface Microbiota in Healthy Adults. Invest Ophthalmol Vis Sci. 2017;58:6030–7.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Liu ZR, Chen H, Dong WJ, Fan YC, Yu H, et al. Comparative study of bacterial status from conjunctival sac of the elder Qiang minority and Han people with dry eye in Sichuan, China. Int J Ophthalmol. 2012;5:343–7.

    PubMed  PubMed Central  Google Scholar 

  21. Delbeke H, Younas S, Casteels I, Joossens M. Current knowledge on the human eye microbiome: a systematic review of available amplicon and metagenomic sequencing data. Acta Ophthalmol. 2021;99:16–25.

    Article  PubMed  Google Scholar 

  22. Kugadas A, Gadjeva M. Impact of Microbiome on Ocular Health. Ocul Surf. 2016;14:342–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Baim AD, Movahedan A, Farooq AV, Skondra D. The microbiome and ophthalmic disease. Exp Biol Med (Maywood). 2019;244:419–29.

    Article  CAS  PubMed  Google Scholar 

  24. Willcox MD. Characterization of the normal microbiota of the ocular surface. Exp Eye Res. 2013;117:99–105.

    Article  CAS  PubMed  Google Scholar 

  25. Chong J, Liu P, Zhou G, Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc. 2020;15:799–821.

    Article  CAS  PubMed  Google Scholar 

  26. Pickering H, Ramadhani AM, Massae P, Mafuru E, Malisa A, Mbuya K, et al. The conjunctival microbiome before and after azithromycin mass drug administration for trachoma control in a cohort of Tanzanian children. Front Public Health. 2022;10:1015714.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ozkan J, Majzoub ME, Coroneo M, Thomas T, Willcox M. Ocular microbiome changes in dry eye disease and meibomian gland dysfunction. Exp Eye Res. 2023;235:109615.

    Article  CAS  PubMed  Google Scholar 

  28. An N, Wang C, Dou X, Liu X, Wu J, Cheng Y. Comparison of 16S rDNA Amplicon Sequencing With the Culture Method for Diagnosing Causative Pathogens in Bacterial Corneal Infections. Transl Vis Sci Technol. 2022;11:29.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ren Z, Liu Q, Li W, Wu X, Dong Y, Huang Y. Profiling of Diagnostic Information of and Latent Susceptibility to Bacterial Keratitis From the Perspective of Ocular Bacterial Microbiota. Front Cell Infect Microbiol. 2021;11:645907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ren Z, Li W, Liu Q, Dong Y, Huang Y. Profiling of the Conjunctival Bacterial Microbiota Reveals the Feasibility of Utilizing a Microbiome-Based Machine Learning Model to Differentially Diagnose Microbial Keratitis and the Core Components of the Conjunctival Bacterial Interaction Network. Front Cell Infect Microbiol. 2022;12:860370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ueta M, Hosomi K, Park J, Mizuguchi K, Sotozono C, Kinoshita S, et al. Categorization of the Ocular Microbiome in Japanese Stevens-Johnson Syndrome Patients With Severe Ocular Complications. Front Cell Infect Microbiol. 2021;11:741654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong X, Wang Y, Wang W, Lin P, Huang Y. Composition and Diversity of Bacterial Community on the Ocular Surface of Patients With Meibomian Gland Dysfunction. Invest Ophthalmol Vis Sci. 2019;60:4774–83.

    Article  CAS  PubMed  Google Scholar 

  33. Willis KA, Postnikoff CK, Freeman A, Rezonzew G, Nichols K, Gaggar A, et al. The closed eye harbours a unique microbiome in dry eye disease. Sci Rep. 2020;10:12035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song H, Xiao K, Chen Z, Long Q. Analysis of Conjunctival Sac Microbiome in Dry Eye Patients With and Without Sjogren’s Syndrome. Front Med (Lausanne). 2022;9:841112.

    Article  PubMed  Google Scholar 

  35. Ali SM, Abdel-Gawad MM, Azab M, Hamed S, Emara M, Shawky RM. Comparative analysis of the ocular surface microbiome in type-1, type-2 diabetes mellitus and healthy individuals. J Appl Microbiol. 2023;134.

  36. Ji X, Dong K, Pu J, Yang J, Zhang Z, Ning X, et al. Comparison of the ocular surface microbiota between thyroid-associated ophthalmopathy patients and healthy subjects. Front Cell Infect Microbiol. 2022;12:914749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wilkins LJ, Monga M, Miller AW. Defining Dysbiosis for a Cluster of Chronic Diseases. Sci Rep. 2019;9:12918.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun. 2017;8:1784.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yu S, Balasubramanian I, Laubitz D, Tong K, Bandyopadhyay S, Lin X, et al. Paneth Cell-Derived Lysozyme Defines the Composition of Mucolytic Microbiota and the Inflammatory Tone of the Intestine. Immunity. 2020;53:398–416.e398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoon CH, Ryu JS, Moon J, Kim MK. Association between aging-dependent gut microbiome dysbiosis and dry eye severity in C57BL/6 male mouse model: a pilot study. BMC Microbiol. 2021;21:106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou Y, Sidhu GS, Whitlock JA, Abdelmalik B, Mayer Z, Li Y, et al. Effects of Carboxymethylcellulose Artificial Tears on Ocular Surface Microbiome Diversity and Composition, A Randomized Controlled Trial. Transl Vis Sci Technol. 2023;12:5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bloom AH, Perry HD, Donnenfeld ED, Davis RG. Chryseobacterium meningosepticum keratitis. Am J Ophthalmol. 2003;136:356–7.

    Article  PubMed  Google Scholar 

  43. Kalogeropoulos D, Holla A, Gupta B, Sutton J, Sepetis A, Rezq H, et al. An Unusual Encounter: Endophthalmitis Associated with Flavobacterium lindanitolerans. Klin Monbl Augenheilkd 2023.

  44. Mirzayi C, Renson A, Genomic Standards C, Massive A, Quality Control S, Zohra F, et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med. 2021;27:1885–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spragge F, Bakkeren E, Jahn MT, Araujo EBN, Pearson CF, Wang X, et al. Microbiome diversity protects against pathogens by nutrient blocking. Science. 2023;382:eadj3502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol. 2007;45:2761–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abellan-Schneyder I, Matchado MS, Reitmeier S, Sommer A, Sewald Z, Baumbach J, et al. Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. mSphere 2021;6.

  48. Wang C, Dou X, Li J, Wu J, Cheng Y, An N. Composition and Diversity of the Ocular Surface Microbiota in Patients With Blepharitis in Northwestern China. Front Med (Lausanne). 2021;8:768849.

    Article  PubMed  Google Scholar 

  49. Ozkan J, Willcox M, Wemheuer B, Wilcsek G, Coroneo M, Thomas T. Biogeography of the human ocular microbiota. Ocul Surf. 2019;17:111–8.

    Article  PubMed  Google Scholar 

  50. Shin H, Price K, Albert L, Dodick J, Park L, Dominguez-Bello MG. Changes in the Eye Microbiota Associated with Contact Lens Wearing. mBio. 2016;7:e00198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yan Y, Yao Q, Lu Y, Shao C, Sun H, Li Y, et al. Association Between Demodex Infestation and Ocular Surface Microbiota in Patients With Demodex Blepharitis. Front Med (Lausanne). 2020;7:592759.

    Article  PubMed  Google Scholar 

  52. Yau JW, Hou J, Tsui SKW, Leung TF, Cheng NS, Yam JC, et al. Characterization of ocular and nasopharyngeal microbiome in allergic rhinoconjunctivitis. Pediatr Allergy Immunol. 2019;30:624–31.

    Article  PubMed  Google Scholar 

  53. Zhang H, Zhao F, Hutchinson DS, Sun W, Ajami NJ, Lai S, et al. Conjunctival Microbiome Changes Associated With Soft Contact Lens and Orthokeratology Lens Wearing. Invest Ophthalmol Vis Sci. 2017;58:128–36.

    Article  CAS  PubMed  Google Scholar 

  54. Zhong Y, Fang X, Wang X, Lin YA, Wu H, Li C. Effects of Sodium Hyaluronate Eye Drops With or Without Preservatives on Ocular Surface Bacterial Microbiota. Front Med (Lausanne). 2022;9:793565.

    Article  PubMed  Google Scholar 

  55. Zhu X, Wei L, Rong X, Zhang Y, Zhang Q, Wen X, et al. Conjunctival Microbiota in Patients With Type 2 Diabetes Mellitus and Influences of Perioperative Use of Topical Levofloxacin in Ocular Surgery. Front Med (Lausanne). 2021;8:605639.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the authors who made their data available as well as those who provided data through personal communications.

Funding

The authors have no proprietary or commercial interest in any materials disclosed in this article. This study was supported in part by National Natural Science Foundation of China (82171089 [JCY]); the General Research Fund (GRF), Research Grants Council, Hong Kong (14111515 and 14103419 [JCY]); Collaborative Research Fund (C7149-20G [JCY]); Health and Medical Research Fund (HMRF), Hong Kong (5160836 [LJC], 07180826 [XJZ] and 21220251 [PCP]),), and the Direct Grants of the Chinese University of Hong Kong, (4054193 [LJC] and 4054121 & 4054199 [JCY] and 178662514 and 4054634 [XJZ] and 2015.1.056); the Innovation and Technology Fund (7010590 [JCY]), the UBS Optimus Foundation Grant 8984 (JCY); the Centaline Myopia Fund [JCY]; the CUHK Jockey Club Children’s Eye Care Programme, and the CUHK Jockey Club Myopia Prevention Programme.

Author information

Authors and Affiliations

Authors

Contributions

XL, XZ, HNC, and JCY conceived of the research. XL and XZ identified and downloaded the datasets. XL and JWY processed the data. CHTB and XL interpreted the results and prepared the manuscript. LJC and JCY supervised the work. All authors discussed and revised the manuscript.

Corresponding authors

Correspondence to Li Jia Chen or Jason C. Yam.

Ethics declarations

Competing interests

The authors declare no competing interests. Alvin Young is a member of the Eye editorial board.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, X., Zhang, X.J., Bui, C.H.T. et al. Multi-cohort analysis identifying core ocular surface microbiome and bacterial alterations in eye diseases. Eye 39, 1276–1285 (2025). https://doi.org/10.1038/s41433-024-03589-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-024-03589-x

Search

Quick links