Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neoantigen-specific mRNA/DC vaccines for effective anticancer immunotherapy

Abstract

The development of personalized anticancer vaccines based on neoantigens represents a new direction in cancer immunotherapy. The latest advancement in dendritic cell (DC) tumor vaccine construction involves loading DC with mRNA-encoding neoantigens, which allows for rapid production and is suitable for personalized preparation. Cell-penetrating peptides (CPPs) are emerging as biological delivery systems in which negatively charged nucleic acids can be wound onto the cationic CPP backbone to form nanoscale complexes. This preparation method facilitates standardization. If DC can express and present neoantigen mRNA at high levels, it holds promising application potential. In this study, we developed a neoantigen-mRNA/DC vaccine using candidate neoantigens from mouse colon cancer (MC38) and examined its immune and antitumor effects. The results demonstrated that neoantigen-mRNA/DC vaccines induced strong T cell immune responses and exhibited significant antitumor effects, effectively preventing tumor growth. Our study provides an experimental basis for further optimizing the preparation of DC vaccines and reducing their costs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the design for neoantigen mRNA vaccine.
Fig. 2: Characterization of mRNA-RALA complexes.
Fig. 3: RALA-based formulations allow efficient mRNA uptake and protein expression in dendritic cells.
Fig. 4: The neoantigen-mRNA/DC vaccine enhances the function of tumor infiltrating lymphocytes.
Fig. 5: Delivery and immune enhancement efficacy of neoantigen-mRNA/DC vaccine.
Fig. 6: Anti-tumor effects of neoantigen-mRNA/DC vaccine in vivo.
Fig. 7: Anti-tumor effects of non-neoantigen mRNA/DC vaccine in vivo.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lin MJ, Svensson-Arvelund J, Lubitz GS, Marabelle A, Melero I, Brown BD, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3:911–26.

    Article  CAS  PubMed  Google Scholar 

  2. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20:7–24.

    Article  CAS  PubMed  Google Scholar 

  3. Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20:621–67.

    Article  CAS  PubMed  Google Scholar 

  4. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131:58–67.

    Article  CAS  PubMed  Google Scholar 

  5. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173:945–54.

    Article  CAS  PubMed  Google Scholar 

  6. Flies DB, Han X, Higuchi T, Zheng L, Sun J, Ye JJ, et al. Coinhibitory receptor PD-1H preferentially suppresses CD4⁺ T cell-mediated immunity. J Clin Invest. 2014;124:1966–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol. 2012;13:832–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martinez-Usatorre A, Romero P. Generation of affinity ranged antigen-expressing tumor cell lines. Methods Enzymol. 2020;632:503–19.

    Article  CAS  PubMed  Google Scholar 

  9. Finn OJ. Human tumor antigens yesterday, today, and tomorrow. Cancer Immunol Res. 2017;5:347–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science. 2018;359:1355–60.

    Article  CAS  PubMed  Google Scholar 

  11. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Balachandran VP, Łuksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551:512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heuts J, Varypataki EM, van der Maaden K, Romeijn S, Drijfhout JW, van Scheltinga AT, et al. Cationic liposomes: a flexible vaccine delivery system for physicochemically diverse antigenic peptides. Pharm Res. 2018;35:207.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–6.

    Article  CAS  PubMed  Google Scholar 

  16. Maugeri M, Nawaz M, Papadimitriou A, Angerfors A, Camponeschi A, Na M, et al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat Commun. 2019;10:4333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akahoshi A, Matsuura E, Ozeki E, Matsui H, Watanabe K, Ohtsuki T. Enhanced cellular uptake of lactosomes using cell-penetrating peptides. Sci Technol Adv Mater. 2016;17:245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Asbeck AH, Beyerle A, McNeill H, Bovee-Geurts PH, Lindberg S, Verdurmen WP, et al. Molecular parameters of siRNA-cell penetrating peptide nanocomplexes for efficient cellular delivery. ACS Nano. 2013;7:3797–807.

    Article  PubMed  Google Scholar 

  19. Deshayes S, Konate K, Rydström A, Crombez L, Godefroy C, Milhiet PE, et al. Self-assembling peptide-based nanoparticles for siRNA delivery in primary cell lines. Small. 2012;8:2184–8.

    Article  CAS  PubMed  Google Scholar 

  20. McCarthy HO, McCaffrey J, McCrudden CM, Zholobenko A, Ali AA, McBride JW, et al. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J Control Release. 2014;189:141–9.

    Article  CAS  PubMed  Google Scholar 

  21. Bennett R, Yakkundi A, McKeen HD, McClements L, McKeogh TJ, McCrudden CM, et al. RALA-mediated delivery of FKBPL nucleic acid therapeutics. Nanomedicine. 2015;10:2989–3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schach DK, Rock W, Franz J, Bonn M, Parekh SH, Weidner T. Reversible activation of a cell-penetrating peptide in a membrane environment. J Am Chem Soc. 2015;137:12199–202.

    Article  CAS  PubMed  Google Scholar 

  23. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3:133–46.

    Article  CAS  PubMed  Google Scholar 

  24. Fujimoto M, Nakano M, Terabe F, Kawahata H, Ohkawara T, Han Y, et al. The influence of excessive IL-6 production in vivo on the development and function of Foxp3(+) regulatory T cells. J Immunol. 2011;186:32–40.

    Article  CAS  PubMed  Google Scholar 

  25. Skalova K, Mollova K, Michalek J. Human myeloid dendritic cells for cancer therapy: does maturation matter? Vaccine. 2010;28:5153–60.

    Article  CAS  PubMed  Google Scholar 

  26. Subbiah V, Murthy R, Hong DS, Prins RM, Hosing C, Hendricks K, et al. Cytokines produced by dendritic cells administered intratumorally correlate with clinical outcome in patients with diverse cancers. Clin Cancer Res. 2018;24:3845–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perez CR, de Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun. 2019;10:5408.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Javorovic M, Pohla H, Frankenberger B, Wölfel T, Schendel DJ. RNA transfer by electroporation into mature dendritic cells leading to reactivation of effector-memory cytotoxic T lymphocytes: a quantitative analysis. Mol Ther. 2005;12:734–43.

    Article  CAS  PubMed  Google Scholar 

  29. Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Investig. 2002;109:409–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anguille S, Van de Velde AL, Smits EL, Van Tendeloo VF, Juliusson G, Cools N, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017;130:1713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kongsted P, Borch TH, Ellebaek E, Iversen TZ, Andersen R, Met Ö, et al. Dendritic cell vaccination in combination with docetaxel for patients with metastatic castration-resistant prostate cancer: a randomized phase II study. Cytotherapy. 2017;19:5–513.

    Article  Google Scholar 

  32. Di Pasquale A, Preiss S, Tavares Da Silva F, Garcon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines. 2015;3:320–43.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: put-ting innate immunity to work. Immunity. 2010;33:492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jia L, Mao Y, Ji Q, Dersh D, Yewdell JW, Qian SB. Decoding mRNA translatability and stability from the 5′ UTR. Nat Struct Mol Biol. 2020;27:814–21.

    Article  CAS  PubMed  Google Scholar 

  35. Chen C-YA, Shyu A-B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci. 1995;20:465–70.

    Article  CAS  PubMed  Google Scholar 

  36. Bernstein P, Peltz SW, Ross J. The poly(a)-poly(a)-binding protein complex is a major determinant of mRNA stability in vitro. Mol Cell Biol. 1989;9:659–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mockey M, Gonçalves C, Dupuy FP, Lemoine FM, Pichon C, Midoux P. mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with poly(a) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun. 2006;340:1062–8.

    Article  CAS  PubMed  Google Scholar 

  38. Zarghampoor F, Azarpira N, Khatami SR, Behzad-Behbahani A, Foroughmand AM. Improved translation efficiency of therapeutic mRNA. Gene. 2019;707:231–8.

    Article  CAS  PubMed  Google Scholar 

  39. Russell JE, Liebhaber SA. The stability of human beta-globin mRNA is dependent on structural determinants positioned within its 3’ untranslated region. Blood. 1996;87:5314–23.

    Article  CAS  PubMed  Google Scholar 

  40. Fransen MF, Schoonderwoerd M, Knopf P, Camps MG, Hawinkels LJ, Kneilling M, et al. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpointtherapy. JCI Insight. 2018;3:23.

    Article  Google Scholar 

  41. Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ. Specific T helper cell requirement for optimal induction of cytotoxicT lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med. 1998;187:693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Borst J, Ahrends T, Babala N, Melief CJM, Kastenmuller W. CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18:635–47.

    Article  CAS  PubMed  Google Scholar 

  43. Duperret EK, Perales-Puchalt A, Stoltz R, Hiranjith GH, Mandloi N, Barlow J, et al. A synthetic DNA, multi-neoantigen vaccine drives predominately MHC class I CD8+T-cell responses, impacting tumor challenge. Cancer Immunol Res. 2019;7:174–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515:572–6.

    Article  CAS  PubMed  Google Scholar 

  45. Kreiter S, Selmi A, Diken M, Sebastian M, Osterloh P, Schild H, et al. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J Immunol. 2008;180:309–18.

    Article  CAS  PubMed  Google Scholar 

  46. Grudzien-Nogalska E, Kowalska J, Su W, Kuhn AN, Slepenkov SV, Darzynkiewicz E, et al. Synthetic mRNAs with superior translation and stability properties. Methods Mol Biol. 2013;969:55–72.

    Article  CAS  PubMed  Google Scholar 

  47. Kuhn AN, Diken M, Kreiter S, Selmi A, Kowalska J, Jemielity J, et al. Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther. 2010;17:961–71.

    Article  CAS  PubMed  Google Scholar 

  48. Berensmeier S. Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol. 2006;73:495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Udhayakumar VK, De Beuckelaer A, McCaffrey J, McCrudden CM, Kirschman JL, Vanover D, et al. Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide. Adv Healthc Mater. 2017;6:1601412.

Download references

Acknowledgements

We would like to thank the Air Force Medical University for the supply of germ-free mice and MC38 cell line.

Author information

Authors and Affiliations

Authors

Contributions

Wenli Zhang: data curation; formal analysis; investigation; supervision; validation; visualization; writing—original draft. Jiahao Guan: methodology; project administration; software; visualization. Wenwen Wang: investigation; methodology; supervision. Guo Chen: supervision; validation. Li Fan: supervision; writing—review and editing; Zifan Lu: supervision; writing—review and editing; project administration.

Corresponding author

Correspondence to Zifan Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All methods were performed in accordance with the relevant guidelines and regulations. All the animal experiments were approved by the Institutional Animal Experiment Administration Committee of the Fourth Military Medical University (Number: 20241257).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Guan, J., Wang, W. et al. Neoantigen-specific mRNA/DC vaccines for effective anticancer immunotherapy. Genes Immun 25, 514–524 (2024). https://doi.org/10.1038/s41435-024-00305-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-024-00305-3

Search

Quick links