Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Water and sodium conservation response induced by SGLT2 inhibitor ipragliflozin in Dahl salt-sensitive hypertensive rats

Abstract

Sodium-glucose cotransporter 2 (SGLT2) inhibitors increase urine volume with glucosuria and natriuresis. We recently reported that osmotic diuresis by the SGLT2 inhibitor ipragliflozin induces fluid homeostatic action via the stimulation of fluid intake and vasopressin-induced water reabsorption in euvolemic rats. However, the effects of SGLT2 inhibitors on these parameters in hypervolemic animals remain unclear. In this study, Dahl salt-sensitive hypertensive rats, a hypervolemic rat model, were fed a low-salt (0.3%) or high-salt (8%) diet for 14 days, then divided into vehicle or ipragliflozin (0.01%) groups. During 7 days of treatment, the high-salt diet groups significantly increased fluid intake and urine volume. In the ipragliflozin groups, fluid intake and urine volume increased by 63% and 235%, respectively, in rats fed a normal-salt diet and by 46% and 72%, respectively, in rats fed a high-salt diet. Ipragliflozin increased urinary vasopressin by 200% and solute-free water reabsorption by 196% in the normal-salt group but by only 44% and 38%, respectively, in the high-salt group. A high-salt diet significantly increased fluid balance (fluid intake – urine volume) and Na+ balance (Na+ intake – urinary Na+), but ipragliflozin did not change fluid and Na+ balance in normal- or high-salt groups. A high-salt diet significantly increased systolic blood pressure, but ipragliflozin did not significantly change systolic blood pressure in normal- or high-salt groups. In conclusion, SGLT2 inhibitor ipragliflozin did not change fluid and Na+ balance regardless of basal fluid retention, suggesting the potential of SGLT2 inhibitors to maintain body water and Na+.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vallon V, Verma S. Effects of SGLT2 inhibitors on kidney and cardiovascular function. Annu Rev Physiol. 2021;83:503–28.

    Article  CAS  PubMed  Google Scholar 

  2. Vallon V. How can inhibition of glucose and sodium transport in the early proximal tubule protect the cardiorenal system? Nephrol Dial Transpl. 2024;4:gfae060.

    Google Scholar 

  3. Nuffield Department of Population Health Renal Studies G, Consortium SiM-AC-RT. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet. 2022;400:1788–801.

    Article  Google Scholar 

  4. Vallon V. State-of-the-art-review Mechanisms of action of SGLT2 inhibitors and clinical implications. Am J Hypertens. 2024;17:hpae092.

    Google Scholar 

  5. Masuda T, Nagata D. Fluid homeostasis induced by sodium-glucose cotransporter 2 inhibitors: novel insight for better cardio-renal outcomes in chronic kidney disease. Hypertens Res. 2023;46:1195–201.

    Article  CAS  PubMed  Google Scholar 

  6. Asakura-Kinoshita M, Masuda T, Oka K, Ohara K, Miura M, Morinari M, et al. Sodium-glucose cotransporter 2 inhibitor combined with conventional diuretics ameliorate body fluid retention without excessive plasma volume reduction. Diagnostics (Basel). 2024;14:1194.

    Article  CAS  PubMed  Google Scholar 

  7. Oka K, Masuda T, Ohara K, Miura M, Morinari M, Misawa K, et al. Fluid homeostatic action of dapagliflozin in patients with chronic kidney disease: the DAPA-BODY Trial. Front Med (Lausanne). 2023;10:1287066.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Masuda T, Ohara K, Vallon V, Nagata D. SGLT2 inhibitor and loop diuretic induce different vasopressin and fluid homeostatic responses in nondiabetic rats. Am J Physiol Ren Physiol. 2022;323:F361–F369.

    Article  CAS  Google Scholar 

  9. Ohara K, Masuda T, Morinari M, Okada M, Miki A, Nakagawa S, et al. The extracellular volume status predicts body fluid response to SGLT2 inhibitor dapagliflozin in diabetic kidney disease. Diabetol Metab Syndr. 2020;12:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Masuda T, Muto S, Fukuda K, Watanabe M, Ohara K, Koepsell H, et al. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol Rep. 2020;8:e14360.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Masuda T, Watanabe Y, Fukuda K, Watanabe M, Onishi A, Ohara K, et al. Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat. Am J Physiol Ren Physiol. 2018;315:F653–F664.

    Article  CAS  Google Scholar 

  12. Schork A, Saynisch J, Vosseler A, Jaghutriz BA, Heyne N, Peter A, et al. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol. 2019;18:46.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Heusser K, Tank J, Diedrich A, Fischer A, Heise T, Jordan J. Randomized trial comparing SGLT2 inhibition and hydrochlorothiazide on sympathetic traffic in type 2 diabetes. Kidney Int Rep. 2023;8:2254–64.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang X, Dorhout Mees E, Vos P, Hamza S, Braam B. Everything we always wanted to know about furosemide but were afraid to ask. Am J Physiol Ren Physiol. 2016;310:F958–971.

    Article  CAS  Google Scholar 

  15. Greene AS, Yu ZY, Roman RJ, Cowley AW Jr. Role of blood volume expansion in Dahl rat model of hypertension. Am J Physiol. 1990;258:H508–514.

    CAS  PubMed  Google Scholar 

  16. Masuda T, Muto S, Fujisawa G, Iwazu Y, Kimura M, Kobayashi T, et al. Heart angiotensin II-induced cardiomyocyte hypertrophy suppresses coronary angiogenesis and progresses diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2012;302:H1871–1883.

    Article  CAS  PubMed  Google Scholar 

  17. Masuda T, Fu Y, Eguchi A, Czogalla J, Rose MA, Kuczkowski A, et al. Dipeptidyl peptidase IV inhibitor lowers PPARgamma agonist-induced body weight gain by affecting food intake, fat mass, and beige/brown fat but not fluid retention. Am J Physiol Endocrinol Metab. 2014;306:E388–398.

    Article  CAS  PubMed  Google Scholar 

  18. Onaka T, Hamamura M, Yagi K. Potentiation of vasopressin secretion by footshocks in rats. Jpn J Physiol. 1986;36:1253–60.

    Article  CAS  PubMed  Google Scholar 

  19. Nagasawa K, Takahashi K, Matsuura N, Takatsu M, Hattori T, Watanabe S, et al. Comparative effects of valsartan in combination with cilnidipine or amlodipine on cardiac remodeling and diastolic dysfunction in Dahl salt-sensitive rats. Hypertens Res. 2015;38:39–47.

    Article  CAS  PubMed  Google Scholar 

  20. Shimizu K, Kurosawa T, Sanjo T. Effect of hyperosmolality on vasopressin secretion in intradialytic hypotension: a mechanistic study. Am J Kidney Dis. 2008;52:294–304.

    Article  CAS  PubMed  Google Scholar 

  21. Onishi A, Fu Y, Patel R, Darshi M, Crespo-Masip M, Huang W, et al. A role for tubular Na(+)/H(+) exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am J Physiol Ren Physiol. 2020;319:F712–F728.

    Article  CAS  Google Scholar 

  22. Mahon WA, Holland J, Urowitz MB. Hyperosmolar, non-ketotic diabetic coma. Can Med Assoc J. 1968;99:1090–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zerbe RL, Robertson GL. Osmoregulation of thirst and vasopressin secretion in human subjects: effect of various solutes. Am J Physiol. 1983;244:E607–614.

    CAS  PubMed  Google Scholar 

  24. Sladek CD, Knigge KM. Osmotic control of vasopressin release by rat hypothalamo-neurohypophyseal explants in organ culture. Endocrinology. 1977;101:1834–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kravtsova O, Bohovyk R, Levchenko V, Palygin O, Klemens CA, Rieg T, et al. SGLT2 inhibition effect on salt-induced hypertension, RAAS, and Na(+) transport in Dahl SS rats. Am J Physiol Ren Physiol. 2022;322:F692–F707.

    Article  CAS  Google Scholar 

  26. Kravtsova O, Levchenko V, Klemens CA, Rieg T, Liu R, Staruschenko A. Effect of SGLT2 inhibition on salt-induced hypertension in female Dahl SS rats. Sci Rep. 2023;13:19231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daniels LB, Maisel AS. Natriuretic peptides. J Am Coll Cardiol. 2007;50:2357–68.

    Article  CAS  PubMed  Google Scholar 

  28. Oka T, Sakaguchi Y, Hattori K, Asahina Y, Kajimoto S, McCallum W, et al. Association of Longitudinal B-Type Natriuretic Peptide Monitoring With Kidney Failure in Patients With CKD: A Cohort Study. Am J Kidney Dis. 2023;82:559–68.

    Article  CAS  PubMed  Google Scholar 

  29. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52:112–9.

    Article  CAS  PubMed  Google Scholar 

  30. Fitzsimmons MD, Roberts MM, Robinson AG. Control of posterior pituitary vasopressin content: implications for the regulation of the vasopressin gene. Endocrinology. 1994;134:1874–8.

    Article  CAS  PubMed  Google Scholar 

  31. Packer M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation. 2022;146:1383–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Packer M. Lack of durable natriuresis and objective decongestion following SGLT2 inhibition in randomized controlled trials of patients with heart failure. Cardiovasc Diabetol. 2023;22:197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Packer M. SGLT2 inhibition: neither a diuretic nor a natriuretic. J Am Coll Cardiol. 2024;83:1399–402.

    Article  CAS  PubMed  Google Scholar 

  34. Marton A, Saffari SE, Rauh M, Sun RN, Nagel AM, Linz P, et al. Water conservation overrides osmotic diuresis during SGLT2 inhibition in patients with heart failure. J Am Coll Cardiol. 2024;83:1386–98.

    Article  CAS  PubMed  Google Scholar 

  35. Pool AH, Wang T, Stafford DA, Chance RK, Lee S, Ngai J, et al. The cellular basis of distinct thirst modalities. Nature. 2020;588:112–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Layton AT, Vallon V. SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism. Am J Physiol Ren Physiol. 2018;314:F969–F984.

    Article  CAS  Google Scholar 

  37. Bahena-Lopez JP, Rojas-Vega L, Chavez-Canales M, Bazua-Valenti S, Bautista-Perez R, Lee JH, et al. Glucose/fructose delivery to the distal nephron activates the sodium-chloride cotransporter via the calcium-sensing receptor. J Am Soc Nephrol. 2023;34:55–72.

    Article  PubMed  Google Scholar 

  38. Castro PC, Santos-Rios TM, Martins FL, Crajoinas RO, Caetano MV, Lessa LMA, et al. Renal upregulation of NCC counteracts empagliflozin-mediated NHE3 inhibition in normotensive but not in hypertensive male rat. Am J Physiol Cell Physiol. 2024;326:C1573–C1589.

    Article  CAS  PubMed  Google Scholar 

  39. Haque MZ, Ares GR, Caceres PS, Ortiz PA. High salt differentially regulates surface NKCC2 expression in thick ascending limbs of Dahl salt-sensitive and salt-resistant rats. Am J Physiol Ren Physiol. 2011;300:F1096–1104.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical support provided by Mihoko Sejimo, Keiko Fukuda, Minami Watanabe, and Mamiko Watanabe (Division of Nephrology, Department of Internal Medicine, Jichi Medical University). We would like to thank Editage (www.editage.jp) for English language editing. This study was supported in part by the Manpei Suzuki Diabetes Foundation No. 32436025 (to T.M.), the Jichi Medical University Young Investigator Award (to T. M.), Salt Science Research Foundation No. 2232 (to T. M.), and a Grant-in-Aid for Young Scientists No. 15K21321 (to T. M.).

Author information

Authors and Affiliations

Authors

Contributions

T.M. conceived and designed the research, performed the experiments, analyzed the data, prepared the figures, and drafted the manuscript. M.Y. performed the experiments, analyzed the data, and drafted the manuscript. T.M., M.Y., and T.O. interpreted the results of the experiments; T.M., M.Y., T.O, and D.N. edited and revised the manuscript; T.M., M.Y., T.O., and D.N. approved the final version of the manuscript.

Corresponding author

Correspondence to Takahiro Masuda.

Ethics declarations

Conflict of interest

Astellas Pharma (Tokyo, Japan) provided SGLT2 inhibitor ipragliflozin for this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuda, T., Yoshida, M., Onaka, T. et al. Water and sodium conservation response induced by SGLT2 inhibitor ipragliflozin in Dahl salt-sensitive hypertensive rats. Hypertens Res 47, 3173–3181 (2024). https://doi.org/10.1038/s41440-024-01893-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-024-01893-3

Keywords

This article is cited by

Search

Quick links