Table 3 The user recommendation table

From: Tradeoffs in alignment and assembly-based methods for structural variant detection with long-read sequencing data

DEL and INS (p = 0 P = 0.5 r = 500 O = 0) (Pacbio)

size range

SV type

top1

top2

top3

top4

top5

50 bp–1 kb

DEL

cuteSV

Sniffles2

MAMnet

Sniffles

SVIM

INS

SKSV

INSnet

MAMnet

PAV

cuteSV

1 kb–10 kb

DEL

cuteSV

PAV

DeBreak

SKSV

Smartie-sv_asm

INS

PAV

SKSV

Smartie-sv_asm

SVIM-asm

pbsv

≥10 kb

DEL

SKSV

cuteSV

SVIM

SVIM-asm

PAV

INS

Dipcall

PAV

DeBreak

SVIM-asm

Smartie-sv_asm

≥50 bp

DEL

cuteSV

DeBreak

Sniffles

SKSV

MAMnet

INS

SKSV

INSnet

PAV

MAMnet

cuteSV

coverage

SV type

top1

top2

top3

top4

top5

5×

DEL

MAMnet

pbsv

PBHoney

Sniffles2

Smartie-sv_aln

INS

MAMnet

Sniffles2

pbsv

Smartie-sv_aln

NanoSV

10×

DEL

MAMnet

pbsv

PBHoney

Sniffles2

Smartie-sv_aln

INS

MAMnet

Sniffles2

Smartie-sv_aln

Smartie-sv_asm

PAV

20×

DEL

DeBreak

Sniffles2

MAMnet

PAV

pbsv

INS

DeBreak

MAMnet

PAV

Sniffles2

SVIM-asm

≥30×

DEL

DeBreak

MAMnet

Sniffles2

PAV

cuteSV

INS

DeBreak

MAMnet

Sniffles2

INSnet

PAV

Complex SV (TRA, INV and DUP) (Pacbio)

data type

SV type

top1

top2

top3

top4

top5

Simulation data (Hifi/CLR)

TRA

NanoSV/cuteSV

cuteSV/pbsv

pbsv/NanoSV

SVIM/SVIM

SKSV/NanoVar

INV

NanoVar/Sniffles2

SVIM/cuteSV

cuteSV/SVIM

Sniffles/NanoVar

Sniffles2/Sniffles

DUP

pbsv/pbsv

DeBreak/NanoVar

NanoVar/Sniffles2

Sniffles2/DeBreak

SVision/NanoSV

data type

SV type

top1

top2

top3

top4

top5

Real cancer data (CLR)

TRA

pbsv

cuteSV

Sniffles

Sniffles2

SVIM

INV

pbsv

SVIM

Sniffles2

SVIM-asm

DeBreak

DUP

DeBreak

Sniffles2

Sniffles

cuteSV

pbsv

DEL and INS (p = 0 P = 0.5 r = 500 O = 0) (ONT)

size range

SV type

top1

top2

top3

top4

top5

5 bp–1 kb

DEL

PAV

cuteSV

SVIM

SVIM-asm

SVision

INS

MAMnet

DeBreak

cuteSV

Sniffles2

PAV

1 kb–10 kb

DEL

DeBreak

PAV

Sniffles

Sniffles2

cuteSV

INS

DeBreak

cuteSV

PAV

MAMnet

Sniffles2

≥10 kb

DEL

SVision

Sniffles

cuteSV

DeBreak

Sniffles2

INS

DeBreak

cuteSV

PAV

MAMnet

SVision

≥50 bp

DEL

PAV

cuteSV

SVIM

SVIM-asm

SVision

INS

cuteSV

MAMnet

DeBreak

Sniffles2

PAV

coverage

SV type

top1

top2

top3

top4

top5

5×

DEL

Sniffles2

NanoVar

PAV

Smartie-sv_aln

DeBreak

INS

Sniffles2

PAV

NanoVar

NanoSV

DeBreak

10×

DEL

Sniffles2

DeBreak

NanoVar

SVIM-asm

SVision

INS

Sniffles2

DeBreak

SVIM-asm

SVision

NanoSV

20×

DEL

PAV

Sniffles2

SVision

MAMnet

SVIM-asm

INS

MAMnet

DeBreak

Sniffles2

PAV

SVIM-asm

≥30×

DEL

PAV

SVIM-asm

Sniffles2

cuteSV

SVIM

INS

MAMnet

DeBreak

Sniffles2

PAV

cuteSV

Complex SV (TRA, INV, and DUP) (ONT)

data type

SV type

top1

top2

top3

top4

top5

Simulation data (ONT)

TRA

cuteSV

NanoSV

SVIM

NanoVar

SVIM-asm

INV

NanoVar

SVIM

cuteSV

Sniffles2

Sniffles

DUP

NanoVar

SVision

Sniffles2

DeBreak

cuteSV

data type

SV type

top1

top2

top3

top4

top5

Real cancer data (ONT)

TRA

NanoSV

Sniffles2

NanoVar

SVIM-asm

cuteSV

INV

NanoSV

Sniffles2

Debreak

SVIM-asm

NanoVar

DUP

Debreak

NanoVar

Sniffles2

SVision

NanoSV

Overall performance across datasets for DEL and INS (p = 0 P = 0.5 r = 500 O = 0)

Data type

SV type

top1

top2

top3

top4

top5

Hifi

DEL

DeBreak

Sniffles2

PAV

SVIM-asm

pbsv

INS

DeBreak

PAV

INSnet

MAMnet

SVIM-asm

CLR

DEL

cuteSV

DeBreak

Sniffles2

pbsv

Sniffles

INS

DeBreak

MAMnet

cuteSV

SVIM-asm

INSnet

Nano

DEL

cuteSV

SVIM

Sniffles2

MAMnet

SVIM-asm

INS

cuteSV

MAMnet

DeBreak

Sniffles2

INSnet

Data type

SV type

top1

top2

top3

top4

top5

Hifi gt

DEL

PAV

Sniffles2

SVIM-asm

pbsv

cuteSV

INS

PAV

SVIM-asm

cuteSV

Sniffles2

DeBreak

CLR gt

DEL

cuteSV

Sniffles2

pbsv

DeBreak

SVIM

INS

cuteSV

DeBreak

SVIM-asm

PAV

Sniffles2

Nano gt

DEL

cuteSV

Sniffles2

SVIM

SVIM-asm

DeBreak

INS

cuteSV

Sniffles2

DeBreak

SVIM-asm

PAV

  1. For each evaluation scenario, the table lists several fine-grained conditions and the top 1–5 methods.