Fig. 1: CHSH test setup.
From: Advances in device-independent quantum key distribution

A central source distributes quantum states ρAB to Alice and Bob, who interact with their measurement devices by providing binary inputs (x and y) and recording binary outputs (a and b) to estimate their CHSH winning probability, ω. As an example, the Tsirelson’s bound \(\omega =(2+\sqrt{2})/4\) is reached if \({\rho }_{{{{\rm{AB}}}}}=\left\vert {\Phi }^{+}\right\rangle \left\langle {\Phi }^{+}\right\vert {{\Phi }^{+}}_{{{{\rm{AB}}}}}\) (with \({\left\vert {\Phi }^{+}\right\rangle }_{{{{\rm{AB}}}}}=({\left\vert 00\right\rangle }_{{{{\rm{AB}}}}}+{\left\vert 11\right\rangle }_{{{{\rm{AB}}}}})/\sqrt{2}\)) and the inputs x and y determine the measurement of the observables Ax and By, where A0 = σZ, A1 = σX, \({B}_{0}=({\sigma }_{{{{\rm{Z}}}}}+{\sigma }_{{{{\rm{X}}}}})/\sqrt{2}\) and \({B}_{1}=({\sigma }_{{{{\rm{Z}}}}}-{\sigma }_{{{{\rm{X}}}}})/\sqrt{2}\) (σZ and σX being Pauli matrices). In this ideal example, Alice records output a upon observation of the eigenvalue (−1)a, and similarly for Bob.