Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supergranular-scale solar convection not explained by mixing-length theory

Abstract

Supergranules, which are solar flow features with a lateral scale of 30,000–40,000 km and a lifetime of ~24 h, form a prominent component of the Sun’s convective spectrum. However, their internal flows, which can be probed only by helioseismology, are not well understood. We analyse dopplergrams recorded by the Solar Dynamics Observatory satellite to identify and characterize ~23,000 supergranules. We find that the vertical flows peak at a depth of ~10,000 km, and remain invariant over the full range of lateral supergranular scales, contrary to numerical predictions. We also infer that, within the local seismic resolution (5,000 km), downflows are ~40% weaker than upflows, indicating an apparent mass-flux imbalance. This may imply that the descending flows also comprise plumes, which maintain the mass balance but are simply too small to be detected by seismic waves. These results challenge the widely used mixing-length description of solar convection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface flow, magnetic field and seismology measurements of the average supergranule.
Fig. 2: Vertical and horizontal flows of the average supergranule.
Fig. 3: Distribution of inflow and outflow sizes and the change in peak depth with horizontal extent.

Similar content being viewed by others

Data availability

The HMI data are courtesy of NASA/SDO and the HMI Science Team. The HMI data are available from the Joint Science Operations Center export site http://jsoc.stanford.edu/. Due to the large volume of data, the mode-coupling products and kernels are available from the authors upon request. The numerical simulations are available upon request from M. Rempel.

Code availability

The mode coupling and inversion codes are available at https://github.com/cshanson/modeCoupling.git. Codes for the Slepian functions are available upon request from F. J. Simons.

References

  1. Miesch, M. S. Large-scale dynamics of the convection zone and tachocline. Living Rev. Sol. Phys. 2, 1 (2005).

    Article  ADS  Google Scholar 

  2. Fan, Y. Magnetic fields in the solar convection zone. Living Rev. Sol. Phys. 6, 4 (2009).

    Article  ADS  Google Scholar 

  3. Nordlund, Å, Stein, R. F. & Asplund, M. Solar surface convection. Living Rev. Sol. Phys. 6, 2 (2009).

    Article  ADS  Google Scholar 

  4. Hanasoge, S. M., Duvall, T. L. & Sreenivasan, K. R. Anomalously weak solar convection. Proc. Natl Acad. Sci. USA 109, 11928–11932 (2012).

    Article  ADS  Google Scholar 

  5. Hanasoge, S., Gizon, L. & Sreenivasan, K. R. Seismic sounding of convection in the Sun. Annu. Rev. Fluid Mech. 48, 191–217 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  6. Hart, A. B. Motions in the Sun at the photospheric level. IV. The equatorial rotation and possible velocity fields in the photosphere. Mon. Not. R. Astron. Soc. 114, 17–38 (1954).

    Article  Google Scholar 

  7. Rincon, F. & Rieutord, M. The Sun’s supergranulation. Living Rev. Sol. Phys. 15, 6 (2018).

    Article  ADS  Google Scholar 

  8. Rincon, F., Roudier, T., Schekochihin, A. A. & Rieutord, M. Supergranulation and multiscale flows in the solar photosphere. Global observations vs. a theory of anisotropic turbulent convection. Astron. Astrophys. 599, A69 (2017).

    Article  ADS  Google Scholar 

  9. Simon, G. W. & Leighton, R. B. Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. Astrophys. J. 140, 1120–1147 (1964).

    Article  Google Scholar 

  10. Hirzberger, J., Gizon, L., Solanki, S. K. & Duvall, T. L. Structure and evolution of supergranulation from local helioseismology. Sol. Phys. 251, 417–437 (2008).

    Article  ADS  Google Scholar 

  11. Parfinenko, L. D., Efremov, V. I. & Solov’ev, A. A. Supergranulation velocity field from the MDI (SOHO) data. Geomagn. Aeron. 54, 1026–1031 (2014).

    Article  ADS  Google Scholar 

  12. Beck, J. G. A comparison of differential rotation measurements. Sol. Phys. 191, 47–70 (2000).

    Article  ADS  Google Scholar 

  13. Langfellner, J., Gizon, L. & Birch, A. C. Spatially resolved vertical vorticity in solar supergranulation using helioseismology and local correlation tracking. Astron. Astrophys. 581, A67 (2015).

    Article  ADS  Google Scholar 

  14. Featherstone, N. A. & Hindman, B. W. The emergence of solar supergranulation as a natural consequence of rotationally constrained interior convection. Astrophys. J. Lett. 830, L15 (2016).

    Article  ADS  Google Scholar 

  15. Greer, B. J., Hindman, B. W. & Toomre, J. Helioseismic measurements of the Rossby number in the Sun’s near-surface shear layer. Astrophys. J. 824, 4 (2016).

    Article  ADS  Google Scholar 

  16. Meunier, N., Tkaczuk, R., Roudier, T. & Rieutord, M. Velocities and divergences as a function of supergranule size. Astron. Astrophys. 461, 1141–1147 (2007).

    Article  ADS  Google Scholar 

  17. Goldbaum, N., Rast, M. P., Ermolli, I., Sands, J. S. & Berrilli, F. The intensity profile of the solar supergranulation. Astrophys. J. 707, 67–73 (2009).

    Article  ADS  Google Scholar 

  18. Langfellner, J., Birch, A. C. & Gizon, L. Intensity contrast of the average supergranule. Astron. Astrophys. 596, A66 (2016).

    Article  ADS  Google Scholar 

  19. Wedemeyer-Böhm, S. & Rouppe van der Voort, L. On the continuum intensity distribution of the solar photosphere. Astron. Astrophys. 503, 225–239 (2009).

    Article  ADS  Google Scholar 

  20. Gizon, L., Duvall, T. L. & Schou, J. Wave-like properties of solar supergranulation. Nature 421, 43–44 (2003).

    Article  ADS  Google Scholar 

  21. Schou, J. Wavelike properties of solar supergranulation detected in Doppler shift data. Astrophys. J. Lett. 596, L259–L262 (2003).

    Article  ADS  Google Scholar 

  22. Langfellner, J., Birch, A. C. & Gizon, L. Evolution and wave-like properties of the average solar supergranule. Astron. Astrophys. 617, A97 (2018).

    Article  ADS  Google Scholar 

  23. Meunier, N. & Lagrange, A. M. Unexpectedly strong effect of supergranulation on the detectability of Earth twins orbiting Sun-like stars with radial velocities. Astron. Astrophys. 625, L6 (2019).

    Article  ADS  Google Scholar 

  24. Meunier, N. & Lagrange, A. M. The effects of granulation and supergranulation on Earth-mass planet detectability in the habitable zone around F6-K4 stars. Astron. Astrophys. 642, A157 (2020).

    Article  ADS  Google Scholar 

  25. Leighton, R. B., Noyes, R. W. & Simon, G. W. Velocity fields in the solar atmosphere. I. Preliminary report. Astrophys. J. 135, 474 (1962).

    Article  ADS  Google Scholar 

  26. Prandtl, L. Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech. 5, 136–139 (1925).

    Article  Google Scholar 

  27. Böhm-Vitense, E. Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen. Zeitschrift Astrophys. 46, 108 (1958).

    ADS  Google Scholar 

  28. Lord, J. W., Cameron, R. H., Rast, M. P., Rempel, M. & Roudier, T. The role of subsurface flows in solar surface convection: modeling the spectrum of supergranular and larger scale flows. Astrophys. J. 793, 24 (2014).

    Article  ADS  Google Scholar 

  29. Spruit, H. C. Convection in stellar envelopes: a changing paradigm. Mem. Soc. Astron. Ital. 68, 397–413 (1997).

    ADS  Google Scholar 

  30. Cossette, J.-F. & Rast, M. P. Supergranulation as the largest buoyantly driven convective scale of the Sun. Astrophys. J. Lett. 829, L17 (2016).

    Article  ADS  Google Scholar 

  31. Simon, G. W. et al. On the relation between photospheric flow fields and the magnetic field distribution on the solar surface. Astrophys. J. 327, 964 (1988).

    Article  ADS  Google Scholar 

  32. Stein, R. F. Solar surface magneto-convection. Living Rev. Sol. Phys. 9, 4 (2012).

    Article  ADS  Google Scholar 

  33. Gizon, L. & Birch, A. C. Local helioseismology. Living Rev. Sol. Phys. 2, 6 (2005).

    Article  ADS  Google Scholar 

  34. Goldreich, P. & Keeley, D. A. Solar seismology. I. The stability of the solar p-modes. Astrophys. J. 211, 934–942 (1977).

    Article  ADS  Google Scholar 

  35. Duvall Jr, T. L., Jefferies, S. M., Harvey, J. W., Osaki, Y. & Pomerantz, M. A. Asymmetries of solar oscillation line profiles. Astrophys. J. 410, 829–836 (1993).

    Article  ADS  Google Scholar 

  36. Duvall Jr, T. L. in Structure and Dynamics of the Interior of the Sun and Sun-like Stars SOHO 6/GONG 98 (ed. Korzennik, S.) 581–585 (ESA, 1998).

  37. Zhao, J. & Kosovichev, A. G. in Local and Global Helioseismology: the Present and Future SOHO 12/GONG+ (ed. Sawaya-Lacoste, H.) 417–420 (ESA, 2003).

  38. Sekii, T. et al. Initial helioseismic observations by Hinode/SOT. Publ. Astron. Soc. Jpn 59, S637 (2007).

    Article  Google Scholar 

  39. Duvall, T. L. & Hanasoge, S. M. Subsurface supergranular vertical flows as measured using large distance separations in time–distance helioseismology. Sol. Phys. 287, 71–83 (2013).

    Article  ADS  Google Scholar 

  40. Duvall, T. L., Hanasoge, S. M. & Chakraborty, S. Additional evidence supporting a model of shallow, high-speed supergranulation. Sol. Phys. 289, 3421–3433 (2014).

    Article  ADS  Google Scholar 

  41. Korda, D. & Švanda, M. Plasma flows and sound-speed perturbations in the average supergranule. Astron. Astrophys. 646, A184 (2021).

    Article  ADS  Google Scholar 

  42. Woodard, M. F. The seismic correlation signature of moderate-scale flow in the Sun. Astrophys. J. 649, 1140–1154 (2006).

    Article  ADS  Google Scholar 

  43. Woodard, M. F. Probing supergranular flow in the solar interior. Astrophys. J. 668, 1189–1195 (2007).

    Article  ADS  Google Scholar 

  44. Hill, F. Rings and trumpets—three-dimensional power spectra of solar oscillations. Astrophys. J. 333, 996–1013 (1988).

  45. Greer, B. J., Hindman, B. W. & Toomre, J. Helioseismic imaging of supergranulation throughout the Sun’s near-surface shear layer. Astrophys. J. 824, 128 (2016).

    Article  ADS  Google Scholar 

  46. Scherrer, P. H. et al. The helioseismic and magnetic imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 207–227 (2012).

    Article  ADS  Google Scholar 

  47. Schou, J. et al. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 229–259 (2012).

    Article  ADS  Google Scholar 

  48. Gizon, L. et al. Helioseismology of sunspots: a case study of NOAA region 9787. Space Sci. Rev. 144, 249–273 (2009).

    Article  ADS  Google Scholar 

  49. Moradi, H. et al. Modeling the subsurface structure of sunspots. Sol. Phys. 267, 1–62 (2010).

    Article  ADS  Google Scholar 

  50. Snodgrass, H. B. Separation of large-scale photospheric Doppler patterns. Sol. Phys. 94, 13–31 (1984).

    Article  ADS  Google Scholar 

  51. Hanson, C. S., Hanasoge, S. & Sreenivasan, K. R. Analyzing supergranular power spectra using helioseismic normal-mode coupling. Astrophys. J. 910, 156 (2021).

    Article  ADS  Google Scholar 

  52. Hanasoge, S. & Mandal, K. Detection of Rossby waves in the Sun using normal-mode coupling. Astrophys. J. Lett. 871, L32 (2019).

    Article  ADS  Google Scholar 

  53. Hanson, C. S., Hanasoge, S. & Sreenivasan, K. R. Discovery of high-frequency retrograde vorticity waves in the Sun. Nat. Astron. 6, 708–714 (2022).

    Article  ADS  Google Scholar 

  54. Mani, P., Hanson, C. S. & Hanasoge, S. Imaging the Sun’s near-surface flows using mode-coupling analysis. Astrophys. J. 926, 127 (2022).

    Article  ADS  Google Scholar 

  55. Woodard, M. F. Evidence for large-scale subsurface convection in the Sun. Mon. Not. R. Astron. Soc. 460, 3292–3297 (2016).

    Article  ADS  Google Scholar 

  56. DeGrave, K., Jackiewicz, J. & Rempel, M. Validating time–distance helioseismology with realistic quiet-Sun simulations. Astrophys. J. 788, 127 (2014).

    Article  ADS  Google Scholar 

  57. Fisher, G. H. & Welsch, B. T. in Subsurface and Atmospheric Influences on Solar Activity Vol. 383 (eds Howe, R. et al.) 373–380 (ASP, 2008).

  58. Simons, F. J. & Wang, D. V. Spatiospectral concentration in the Cartesian plane. GEM - Int. J. Geomath. 2, 1–36 (2011).

    Article  MathSciNet  Google Scholar 

  59. Christensen-Dalsgaard, J. et al. The current state of solar modeling. Science 272, 1286–1292 (1996).

    Article  ADS  Google Scholar 

  60. Rosenthal, C. S., Christensen-Dalsgaard, J., Nordlund, Å, Stein, R. F. & Trampedach, R. Convective contributions to the frequencies of solar oscillations. Astron. Astrophys. 351, 689–700 (1999).

    ADS  Google Scholar 

  61. Van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

    Article  Google Scholar 

  62. Brandenburg, A. Stellar mixing length theory with entropy rain. Astrophys. J. 832, 6 (2016).

    Article  ADS  Google Scholar 

  63. Anders, E. H., Lecoanet, D. & Brown, B. P. Entropy rain: dilution and compression of thermals in stratified domains. Astrophys. J. 884, 65 (2019).

    Article  ADS  Google Scholar 

  64. Hanasoge, S. M. & Cally, P. S. Multiple scattering of waves by a pair of gravitationally stratified flux tubes. Astrophys. J. 697, 651–659 (2009).

    Article  ADS  Google Scholar 

  65. Hanson, C. S. & Cally, P. S. An analytical approach to scattering between two thin magnetic flux tubes in a stratified atmosphere. Astrophys. J. 781, 125 (2014).

    Article  ADS  Google Scholar 

  66. Hanson, C. S. & Cally, P. S. The scattering of f- and p-modes from ensembles of thin magnetic flux tubes: an analytical approach. Astrophys. J. 791, 129 (2014).

    Article  ADS  Google Scholar 

  67. Felipe, T., Braun, D., Crouch, A. & Birch, A. Scattering of the f-mode by small magnetic flux elements from observations and numerical simulations. Astrophys. J. 757, 148 (2012).

    Article  ADS  Google Scholar 

  68. Deane, A. E., Knobloch, E. & Toomre, J. Traveling waves in large-aspect-ratio thermosolutal convection. Phys. Rev. A 37, 1817–1820 (1988).

    Article  ADS  Google Scholar 

  69. Krishnamurti, R. & Howard, L. N. Large-scale flow generation in turbulent convection. Proc. Natl Acad. Sci. USA 78, 1981–1985 (1981).

    Article  ADS  Google Scholar 

  70. Das, S. B. Recipe for inferring subsurface solar magnetism via local mode coupling using Slepian basis functions. Astrophys. J. 940, 92 (2022).

    Article  ADS  Google Scholar 

  71. November, L. J. & Simon, G. W. Precise proper-motion measurement of solar granulation. Astrophys. J. 333, 427 (1988).

    Article  ADS  Google Scholar 

  72. Duvall Jr, T. L., Jefferies, S. M., Harvey, J. W. & Pomerantz, M. A. Time–distance helioseismology. Nature 362, 430–432 (1993).

    Article  ADS  Google Scholar 

  73. Woodard, M. Detectability of large-scale solar subsurface flows. Sol. Phys. 289, 1085–1100 (2014).

    Article  ADS  Google Scholar 

  74. Anderson, E. R., Duvall Jr, T. L. & Jefferies, S. M. Modeling of solar oscillation power spectra. Astrophys. J. 364, 699–705 (1990).

    Article  ADS  Google Scholar 

  75. Basu, S., Antia, H. M. & Tripathy, S. C. Ring diagram analysis of near-surface flows in the Sun. Astrophys. J. 512, 458–470 (1999).

    Article  ADS  Google Scholar 

  76. Lavely, E. M. & Ritzwoller, M. H. The effect of global-scale, steady-state convection and elastic-gravitational asphericities on helioseismic oscillations. Philos. Trans. R. Soc. A 339, 431–496 (1992).

    ADS  Google Scholar 

  77. Hanasoge, S. M., Woodard, M., Antia, H. M., Gizon, L. & Sreenivasan, K. R. Sensitivity of helioseismic measurements of normal-mode coupling to flows and sound-speed perturbations. Mon. Not. R. Astron. Soc. 470, 1404–1420 (2017).

    Article  ADS  Google Scholar 

  78. Townsend, R. H. D. & Teitler, S. A. GYRE: an open-source stellar oscillation code based on a new Magnus multiple shooting scheme. Mon. Not. R. Astron. Soc. 435, 3406–3418 (2013).

    Article  ADS  Google Scholar 

  79. Townsend, R. H. D., Goldstein, J. & Zweibel, E. G. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars. Mon. Not. R. Astron. Soc. 475, 879–893 (2018).

    Article  ADS  Google Scholar 

  80. Goldstein, J. & Townsend, R. H. D. The contour method: a new approach to finding modes of nonadiabatic stellar pulsations. Astrophys. J. 899, 116 (2020).

    Article  ADS  Google Scholar 

  81. Ferret, R. Z. SDO/HMI observations of the average supergranule are not compatible with separable flow models. Astron. Astrophys. 623, A98 (2019).

    Article  ADS  Google Scholar 

  82. Hansen, P. C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992).

    Article  MathSciNet  Google Scholar 

  83. Duvall Jr, T. L. & Birch, A. C. The vertical component of the supergranular motion. Astrophys. J. Lett. 725, L47–L51 (2010).

    Article  ADS  Google Scholar 

  84. Vögler, A. et al. Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335–351 (2005).

    Article  ADS  Google Scholar 

  85. Lord, J. W. Deep Convection, Magnetism and Solar Supergranulation. PhD thesis, Univ. of Colorado (2014).

  86. Ball, W. H. & Gizon, L. A new correction of stellar oscillation frequencies for near-surface effects. Astron. Astrophys. 568, A123 (2014).

    Article  ADS  Google Scholar 

  87. Švanda, M. Issues with time–distance inversions for supergranular flows. Astron. Astrophys. 575, A122 (2015).

    Article  ADS  Google Scholar 

  88. Birch, A. C., Kosovichev, A. G. & Duvall Jr, T. L. Sensitivity of acoustic wave travel times to sound-speed perturbations in the solar interior. Astrophys. J. 608, 580–600 (2004).

    Article  ADS  Google Scholar 

  89. Gizon, L. et al. Computational helioseismology in the frequency ___domain: acoustic waves in axisymmetric solar models with flows. Astron. Astrophys. 600, A35 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. J. Simons for the codes for computing Slepian functions, M. Rempel and R. Cameron for their insights into solar convection, J. W. Lord for the numerical simulations and J. Naranjo for his help with the NYUAD NetDRMS system. This research was carried out with the High Performance Computing resources at NYUAD. The datasets were prepared in the data centre at the Center for Space Science of NYUAD. This research is based upon work supported by Tamkeen under the NYUAD Research Institute (Grant Nos G1502 and CASS to C.S.H, S.H. and K.R.S.). S.H. acknowledges funding from the Department of Atomic Energy, India. K.R.S. and S.H. acknowledge support from the Office of Sponsored Research of King Abdullah University of Science and Technology (Award No. OSR-CRG2020-4342). S.B.D. acknowledges funding from the Elisabeth H. and F. A. Dahlen Award 2022 by the Department of Geosciences, Princeton University. S.B.D. also acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under a Marie Skłodowska-Curie grant (Grant Agreement No. 101034413). Some data products were processed and downloaded from the German Data Center for SDO, which is funded by the German Aerospace Center (DLR Grant No. 500L1701).

Author information

Authors and Affiliations

Authors

Contributions

C.S.H., S.H. and K.R.S. designed the research. C.S.H. developed the software and performed the observational and computational analysis. S.B.D. developed and implemented the mathematical formalism for Slepian functions in this analysis. P.M. tuned the surface measurements and developed the software. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Chris S. Hanson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Michal Švanda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanson, C.S., Bharati Das, S., Mani, P. et al. Supergranular-scale solar convection not explained by mixing-length theory. Nat Astron 8, 1088–1101 (2024). https://doi.org/10.1038/s41550-024-02304-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02304-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing