Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integration of chemical and physical inputs for monitoring metabolites and cardiac signals in diabetes

Abstract

The development of closed-loop systems towards effective management of diabetes requires the inclusion of additional chemical and physical inputs that affect disease pathophysiology and reflect cardiovascular risks in patients. Comprehensive glycaemic control information should account for more than a single glucose signal. Here, we describe a hybrid flexible wristband sensing platform that integrates a microneedle array for multiplexed biomarker sensing and an ultrasonic array for blood pressure, arterial stiffness and heart-rate monitoring. The integrated system provides a continuous evaluation of the metabolic and cardiovascular status towards improving glycaemic control and alerting patients to cardiovascular risks. The multimodal platform offers continuous glucose, lactate and alcohol monitoring, along with simultaneous ultrasonic measurements of blood pressure, arterial stiffness and heart rate, to support understanding of the interplay between interstitial fluid biomarkers and physiological parameters during common activities. By expanding the continuous monitoring of patients with diabetes to additional biomarkers and key cardiac signals, our integrated multiplexed chemical–physical health-monitoring platform holds promise for addressing the limitations of existing single-modality glucose-monitoring systems towards enhanced management of diabetes and related cardiovascular risks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the multimodal BLUE platform for simultaneously tracking chemical biomarkers and physical signals.
Fig. 2: Mechanical properties of the sensing platforms.
Fig. 3: Monitoring and characterization of individual sensors.
Fig. 4: In vivo monitoring of BP along with different biomarkers.
Fig. 5: Extended simultaneous in vivo monitoring BP along with multiple biomarkers during different daily activities.
Fig. 6: Extended simultaneous in vivo monitoring of BP along with multiple biomarkers in high-risk prediabetes during different daily activities.

Similar content being viewed by others

Data availability

The manuscript includes all the data collected and analysed in the study, and more information is included in the Supplementary Information.

Code availability

The code for decoding the transducer data to blood pressure waveforms is available via GitHub at https://github.com/MuyangLin95/Processing-scripts-for-monitoring-metabolites-and-cardiac-signals-in-diabetes.git (ref. 63).

References

  1. Zimmet, P. Z., Magliano, D. J., Herman, W. H. & Shaw, J. E. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2, 56–64 (2014).

    Article  PubMed  Google Scholar 

  2. Roglic, G. WHO Global report on diabetes: a summary. Int. J. Noncommun. Dis. 1, 3–8 (2016).

    Article  Google Scholar 

  3. Klonoff, D. C., Ahn, D. & Drincic, A. Continuous glucose monitoring: a review of the technology and clinical use. Diabetes Res. Clin. Pract. 133, 178–192 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Lin, R., Brown, F., James, S., Jones, J. & Ekinci, E. Continuous glucose monitoring: a review of the evidence in type 1 and 2 diabetes mellitus. Diabet. Med. 38, e14528 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Teymourian, H., Barfidokht, A. & Wang, J. Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 49, 7671–7709 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Wolkowicz, K. L. et al. A review of biomarkers in the context of type 1 diabetes: biological sensing for enhanced glucose control. Bioeng. Transl. Med. 6, e10201 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Avogaro, A. et al. Glucose tolerance during moderate alcohol intake: insights on insulin action from glucose/lactate dynamics. J. Clin. Endocrinol. Metab. 87, 1233–1238 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, M.-S., Wang, A. & Yu, H. Link between insulin resistance and hypertension: what is the evidence from evolutionary biology? Diabetol. Metab. Syndr. 6, 12 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Svensson, M. K. et al. Alterations in heart rate variability during everyday life are linked to insulin resistance. A role of dominating sympathetic over parasympathetic nerve activity? Cardiovasc. Diabetol. 15, 91 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eckel, R. H., Bornfeldt, K. E. & Goldberg, I. J. Cardiovascular disease in diabetes, beyond glucose. Cell Metab. 33, 1519–1545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, Y., Lee, K., Ni, Z. & He, J. C. Diabetic kidney disease: challenges, advances, and opportunities. Kidney Dis. 6, 215–225 (2020).

    Article  Google Scholar 

  12. Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Tasca, F., Tortolini, C., Bollella, P. & Antiochia, R. Microneedle-based electrochemical devices for transdermal biosensing: a review. Curr. Opin. Electrochem. 16, 42–49 (2019).

    Article  CAS  Google Scholar 

  14. Himawan, A. et al. Where microneedle meets biomarkers: futuristic application for diagnosing and monitoring localized external organ diseases. Adv. Healthc. Mater. 12, 2202066 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Imani, S. et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu, Y. et al. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat. Biomed. Eng. 7, 1307–1320 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, C. et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. 7, 168–179 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bernardin, G., Pradier, C., Tiger, F., Deloffre, P. & Mattei, M. Blood pressure and arterial lactate level are early indicators of short-term survival in human septic shock. Intensive Care Med. 22, 17–25 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Ho, K. K. Y. et al. Evaluation of an anti-thrombotic continuous lactate and blood pressure monitoring catheter in an in vivo piglet model undergoing open-heart surgery with cardiopulmonary bypass. Chemosensors (Basel) 8, 56 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Moonla, C. et al. Continuous ketone monitoring via wearable microneedle patch platform. ACS Sens. 9, 1004–1013 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Roh, H. et al. Fabrication of high-density out-of-plane microneedle arrays with various heights and diverse cross-sectional shapes. Nanomicro. Lett. 14, 24 (2021).

    PubMed  PubMed Central  Google Scholar 

  23. Chang, A.-Y. et al. Dopamine sensing with robust carbon nanotube implanted polymer micropillar array electrodes fabricated by coupling micromolding and infiltration coating processes. Electrochim. Acta 368, 137632 (2021).

    Article  CAS  Google Scholar 

  24. Römgens, A. M., Bader, D. L., Bouwstra, J. A., Baaijens, F. P. T. & Oomens, C. W. J. Monitoring the penetration process of single microneedles with varying tip diameters. J. Mech. Behav. Biomed. Mater. 40, 397–405 (2014).

    Article  PubMed  Google Scholar 

  25. MicroChem. SU-8 2000.5-2015 Permanent Epoxy Negative Photoresist PROCESSING GUIDELINES. SU-8 2000 Datasheet 1–5 (Kayaku, 2015).

  26. Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gordin, D. et al. Influence of postprandial hyperglycemic conditions on arterial stiffness in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 101, 1134–1143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carlson, O. et al. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism 56, 1729–1734 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clark, L. T. Alcohol-induced hypertension: mechanisms, complications, and clinical implications. J. Natl Med. Assoc. 77, 385–389 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mayl, J. J. et al. Association of alcohol intake with hypertension in type 2 diabetes mellitus: the ACCORD Trial. J. Am. Heart Assoc. 9, e017334 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Howes, L. G. & Reid, J. L. The effects of alcohol on local, neural and humoral cardiovascular regulation. Clin. Sci. 71, 9–15 (1986).

    Article  CAS  Google Scholar 

  32. Hwang, C.-L., Muchira, J., Hibner, B. A., Phillips, S. A. & Piano, M. R. Alcohol consumption: a new risk factor for arterial stiffness? Cardiovasc. Toxicol. 22, 236–245 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tian, D. & Meng, J. Exercise for prevention and relief of cardiovascular disease: prognoses, mechanisms, and approaches. Oxid. Med. Cell. Longev. 2019, 3756750 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shahraki, M. R., Mirshekari, H., Shahraki, A. R., Shahraki, E. & Naroi, M. Arterial blood pressure in female students before, during and after exercise. ARYA Atheroscler. 8, 12–15 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. Coates, A. M., Joyner, M. J., Little, J. P., Jones, A. M. & Gibala, M. J. A perspective on high-intensity interval training for performance and health. Sport Med. 53, 85–96 (2023).

    Article  Google Scholar 

  36. Mohammed, L. L. M. et al. Exercise-induced hypertension in healthy individuals and athletes: is it an alarming sign? Cureus 12, e11988 (2020).

    PubMed  Google Scholar 

  37. MacDonald, J. R. Potential causes, mechanisms, and implications of post exercise hypotension. J. Hum. Hypertens. 16, 225–236 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Parkes, J. L., Slatin, S. L., Pardo, S. & Ginsberg, B. H. A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care 23, 1143–1148 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Madsen, J. L., Søndergaard, S. B. & Møller, S. Meal-induced changes in splanchnic blood flow and oxygen uptake in middle-aged healthy humans. Scand. J. Gastroenterol. 41, 87–92 (2006).

    Article  PubMed  Google Scholar 

  40. Jones, A. W. & Jönsson, K. A. Food-induced lowering of blood-ethanol profiles and increased rate of elimination immediately after a meal. J. Forensic Sci. 39, 1084–1093 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Richter, B. et al. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst. Rev. 10, CD012661 (2018).

    PubMed  Google Scholar 

  42. Warren, B. et al. Comparative prognostic performance of definitions of prediabetes: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 5, 34–42 (2017).

    Article  PubMed  Google Scholar 

  43. Huang, Y. et al. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ 355, i5953 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rooney, M. R. et al. Global prevalence of prediabetes. Diabetes Care 46, 1388–1394 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu, J.-R. et al. Effects of carbohydrate quality and amount on plasma lactate: results from the OmniCarb trial. BMJ Open Diabetes Res. Care 8, e001457 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Emhoff, C.-A.W. & Messonnier, L.A. Concepts of lactate metabolic clearance rate and lactate clamp for metabolic inquiry: a mini-review. Nutrients 15, 3213 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rynders, C. A. et al. Effects of exercise intensity on postprandial improvement in glucose disposal and insulin sensitivity in prediabetic adults. J. Clin. Endocrinol. Metab. 99, 220–228 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Chai, Y. et al. Association of body mass index with risk of prediabetes in Chinese adults: a population-based cohort study. J. Diabetes Investig. 13, 1235–1244 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shapiro, N. I. et al. Lactate as a predictor of mortality in patients with severe sepsis. Crit. Care Med. 37, 1678–1684 (2009).

    Google Scholar 

  50. Bishop, N. D. et al. The role of lactate in the assessment of the critically ill. J. Criti. Care 37, 110–115 (2017).

    Google Scholar 

  51. Bodenheimer, T. & Handley, M. A. Goal-setting for behavior change in diabetes: what’s the evidence? Diabetes Educ. 35, 775–782 (2009).

    Google Scholar 

  52. Fisher, L. et al. The role of self-monitoring in diabetes management: a review. Diabetes Spectrum 29, 129–135 (2016).

    Google Scholar 

  53. Tabák, A. G. et al. Prediabetes: a high-risk state for developing diabetes. Lancet 379, 2279–2290 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Y. et al. Artificial intelligence in diabetes care: current applications and future directions. Diabetes Care 43, 141–148 (2020).

    Google Scholar 

  55. Lin, M. et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. Nat. Biotechnol. 42, 448–457 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Lv, J. et al. Printable elastomeric electrodes with sweat-enhanced conductivity for wearables. Sci. Adv. 7, eabg8433 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yin, L. et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5, 694–705 (2022).

    Article  Google Scholar 

  58. Kim, J. et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv. Sci. 5, 1800880 (2018).

    Article  Google Scholar 

  59. Kim, J. et al. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens. 1, 1011–1019 (2016).

    Article  CAS  Google Scholar 

  60. Butman, S. M., Ewy, G. A., Standen, J. R., Kern, K. B. & Hahn, E. Bedside cardiovascular examination in patients with severe chronic heart failure: importance of rest or inducible jugular venous distension. J. Am. Coll. Cardiol. 22, 968–974 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Baruch, M. C., Kalantari, K., Gerdt, D. W. & Adkins, C. M. Validation of the pulse decomposition analysis algorithm using central arterial blood pressure. Biomed. Eng. Online 13, 96 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Izzo, J. L. Pulse contour analysis and augmentation index: It’s time to move beyond cuff blood pressure measurement. Am. J. Hypertens. 18, 1S–2S (2005).

    Article  PubMed  Google Scholar 

  63. Chang, A.-Y. et al. Processing-scripts-for-monitoring-metabolites-and-cardiac-signals-in-diabetes. Zenodo https://doi.org/10.5281/zenodo.15476742 (2025).

Download references

Acknowledgements

This research is supported by the UCSD Center for Wearable Sensors (CWS). M.R. received support from the UC-MEXUS-CONAHCYT Doctoral Fellowship. We thank S. Suresh for assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.-Y.C., M.L., L.Y., M.R., S.X. and J.W. conceived and designed the research. A.-Y.C., M.L., L.Y. and M.R. conducted the experiments. A.-Y.C., M.L., L.Y., M.R., S.D., R.L., Y.D., A.C., G.P., Z.L., H.L. and N.A. performed the experiments. A.-Y.C., M.L., L.Y. and M.R. analysed the data. A.-Y.C., M.L., L.Y., M.R., S.X. and J.W. wrote the manuscript with valuable feedback and assistance from other co-authors.

Corresponding authors

Correspondence to Sheng Xu or Joseph Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Chi Hwan Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1–10, reference, Figs. 1–32, Tables 1 and 2, and Videos 1–6.

Reporting Summary

Supplementary Video 1

The BLUE wristband platform was worn on the participants wrist during jumping rope.

Supplementary Video 2

The BLUE wristband platform was worn on the participants wrist while dribbling the basketball.

Supplementary Video 3

The BLUE wristband platform was worn on the participant’s wrist while doing push-ups.

Supplementary Video 4

The BLUE wristband platform on the participant’s wrist was worn in an inverted direction to enhance the microneedle array’s visibility and demonstrate finger contact with the ECG system.

Supplementary Video 5

Demonstrating the installation and disposal of the microneedle array: the microneedle array is assembled and disassembled to the wristband.

Supplementary Video 6

Skin penetration stimulation of the microneedle system.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, AY., Lin, M., Yin, L. et al. Integration of chemical and physical inputs for monitoring metabolites and cardiac signals in diabetes. Nat. Biomed. Eng (2025). https://doi.org/10.1038/s41551-025-01439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-025-01439-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research