Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Anatomical structures, cell types and biomarkers of the Human Reference Atlas

Abstract

The Human Reference Atlas (HRA) aims to map all of the cells of the human body to advance biomedical research and clinical practice. This Perspective presents collaborative work by members of 16 international consortia on two essential and interlinked parts of the HRA: (1) three-dimensional representations of anatomy that are linked to (2) tables that name and interlink major anatomical structures, cell types, plus biomarkers (ASCT+B). We discuss four examples that demonstrate the practical utility of the HRA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Components and construction of the HRA.
Fig. 2: Tissue registration and exploration.
Fig. 3: Immune cell phenotypes evolve with developmental stage, tissue and disease context.
Fig. 4: Kidney ASCT+B table.

Similar content being viewed by others

References

  1. Chen, G., Ning, B. & Shi, T. Single-cell RNA-seq technologies and related computational data analysis. Front. Genet. https://doi.org/10.3389/fgene.2019.00317 (2019).

  2. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The human cell atlas: from vision to reality. Nature 574, 187–192 (2017).

    Google Scholar 

  3. Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ding, S. L. et al. Comprehensive cellular-resolution atlas of the adult human brain. J. Comp. Neurol. 524, 3127–3481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Devor, A. et al. The challenge of connecting the dots in the B.R.A.I.N. Neuron 80, 270–274 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Moghe, I., Loupy, A. & Solez, K. The human cell atlas project by the numbers: relationship to the Banff classification. Am. J. Transpl. 18, 1830 (2018).

    Article  Google Scholar 

  7. Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  8. McMahon, A. P. et al. GUDMAP: the genitourinary developmental molecular anatomy project. J. Am. Soc. Nephrol. 19, 667–671 (2008).

    Article  PubMed  Google Scholar 

  9. Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Srivastava, S. et al. The making of a PreCancer Atlas: promises, challenges, and opportunities. Trends Cancer 4, 523–536 (2018).

    Article  PubMed  Google Scholar 

  11. Snyder, M. P. et al. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).

    Article  Google Scholar 

  12. Himmelstein, D. S. et al. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife 6, e26726 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. El-Achkar, T. M. et al. A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: guidelines from the Kidney Precision Medicine Project. Physiol. Genomics 53, 1–11 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Ardini-Poleske, M. E. et al. LungMAP: the molecular atlas of lung development program. Am. J. Physiol. Lung Cell. Mol. Physiol. 313, L733–L740 (2013).

    Article  Google Scholar 

  15. Oxburgh, L. et al. (Re)building a kidney. J. Am. Soc. Nephrol. 28, 1370–1378 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stimulating Peripheral Activity to Relieve Conditions (SPARC) (NIH, 2020); https://commonfund.nih.gov/sparc

  17. Heng, H. H. Q. Cancer genome sequencing the challenges ahead. Bioessays 29, 783–794 (2007).

    Article  PubMed  Google Scholar 

  18. TGCA Research Network Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

    Article  Google Scholar 

  19. Freire, P. et al. Exploratory analysis of the copy number alterations in glioblastoma multiforme. PLoS ONE 3, e4076 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aumann, S., Donner, S., Fischer, J. & Muller, F. in High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics (ed. Bille, J. F.) 59–85. Springer (2019).

  21. Yin, R., Burnum-Johnson, K. E., Sun, X., Dey, S. K. & Laskin, J. High spatial resolution imaging of biological tissues using nanospray desorption electrospray ionization mass spectrometry. Nat. Protoc. 14, 3445–3470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  24. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moffitt, J. R. et al. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl Acad. Sci. USA 113, 11046–11051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Asp, M., Bergenstrahle, J. & Lundeberg, J. Spatially resolved transcriptomes-next generation tools for tissue exploration. Bioessays 42, e1900221 (2020).

    Article  PubMed  Google Scholar 

  30. Zollinger, D. R., Lingle, S. E., Sorg, K., Beechem, J. M. & Merritt, C. R. GeoMx RNA Assay: high multiplex, digital, spatial analysis of RNA in FFPE tissue. Methods Mol. Biol. 2148, 331–345 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Visium Spatial Gene Expression (10x Genomics, 2021); https://www.10xgenomics.com/products/spatial-gene-expression

  32. Miller, J. A. et al. Common cell type nomenclature for the mammalian brain. eLife 9, e59928 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mungall, C. J., Torniai, C., Gkoutos, G. V., Lewis, S. E. & Haendel, M. A. Uberon, an integrative multi-species anatomy ontology. Genome Biol. 13, R5 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Golbreich, C., Grosjean, J. & Darmoni, S. J. The foundational model of anatomy in OWL 2 and its use. Artif. Intell. Med. 57, 119–132 (2013).

    Article  PubMed  Google Scholar 

  35. Rosse, C. & Mejino, J. L. V. A reference ontology for biomedical informatics: the Foundational Model of Anatomy. J. Biomed. Inform. 36, 478–500 (2003).

    Article  PubMed  Google Scholar 

  36. Meehan, T. F. et al. Logical development of the Cell Ontology. BMC Bioinform. 12, 6 (2011).

    Article  Google Scholar 

  37. Ding, S. L. et al. Allen Human Reference Atlas—3D, 2020 (2021); http://download.alleninstitute.org/informatics-archive/allen_human_reference_atlas_3d_2020/version_2021

  38. Fonseca, C. G. et al. The Cardiac Atlas Project: an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27, 2288–2295 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Géron, A., Werner, J., Wattiez, R., Lebaron, P. & Mattallana-Surget, S. Deciphering the functioning of microbial communities: shedding light on the critical steps in metaproteomics. Front. Microbiol. 10, 2395 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Manz, M. G., Miyamoto, T., Akashi, K. & Weissman, I. L. Prospective isolation of human clonogenic common myeloid progenitors. Proc. Natl Acad. Sci. USA 99, 11872–11877 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fajtova, M., Kovarikova, A., Svec, P., Kankuri, E. & Sedlak, J. Immunophenotypic profile of nucleated erythroid progenitors during maturation in regenerating bone marrow. Leuk. Lymphoma 54, 2523–2530 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Kawamura, S. et al. Identification of a human clonogenic progenitor with strict monocyte differentiation potential: a counterpart of mouse cMoPs. Immunity 54, 2523–2530 (2017).

    Google Scholar 

  43. Mousset, C. M. et al. Comprehensive phenotyping of T cells using flow cytometry. Cytom. A 95, 647–654 (2019).

    Article  Google Scholar 

  44. Mello, F. V. et al. Maturation-associated gene expression profiles along normal human bone marrow monopoiesis. Br. J. Haematol. 176, 464–474 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Tomer, A. Human marrow megakaryocyte differentiation: multiparameter correlative analysis identifies von Willebrand factor as a sensitive and distinctive marker for early (2N and 4N) megakaryocytes. Blood 104, 2722–2727 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Doulatov, S. et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat. Immunol. 11, 585–593 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Elghetany, M. T., Ge, Y., Patel, J., Martinez, J. & Uhrova, H. Flow cytometric study of neutrophilic granulopoiesis in normal bone marrow using an expanded panel of antibodies: correlation with morphologic assessments. J. Clin. Lab. Anal. 18, 36–41 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Szabo, P. A. et al. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat. Commun. 10, 4706 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kaminski, D. A., Wei, C., Qian, Y., Rosenberg, A. F. & Sanz, I. Advances in human B cell phenotypic profiling. Front. Immunol. 3, 302 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hay, S. B., Ferchen, K., Chetal, K., Grimes, H. L. & Salomonis, N. The Human Cell Atlas bone marrow single-cell interactive web portal. Exp. Hematol. 68, P51–P61 (2018).

    Article  Google Scholar 

  51. Clavarino, G. et al. Novel strategy for phenotypic characterization of human B lymphocytes from precursors to effector cells by flow cytometry. PLoS ONE 11, e0162209 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Popescu, D. M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Giannasca, P. J., Giannasca, K. T., Leichtner, A. M. & Neutra, M. R. Human intestinal M cells display the sialyl Lewis A antigen. Infect. Immun. 67, 946–953 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Buettner, M. & Lochner, M. Development and function of secondary and tertiary lymphoid organs in the small intestine and the colon. Front. Immunol. 7, 342 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hoyle, C. H. & Burnstock, G. Neuronal populations in the submucous plexus of the human colon. J. Anat. 166, 7–22 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Westerhoff, M. & Greeson, J. in Histology for Pathologists (ed. Mills, S.) Ch. 24, 640–663 (Wolters Kluwer, 2019).

  61. Azzali, G. Structure, lymphatic vascularization and lymphocyte migration in mucosa-associated lymphoid tissue. Immunol. Rev. 195, 178–189 (2003).

    Article  PubMed  Google Scholar 

  62. Furness, J. B., Callaghan, B. P., Rivera, L. R. & Cho, H. J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv. Exp. Med. Biol. 817, 39–71 (2014).

    Article  PubMed  Google Scholar 

  63. Arai, T. & Kino, I. Morphometrical and cell kinetic studies of normal human colorectal mucosa. Comparison between the proximal and the distal large intestine. Acta Pathol. Jpn 39, 725–730 (1989).

    CAS  PubMed  Google Scholar 

  64. Fenton, T. M. et al. Immune profiling of human gut-associated lymphoid tissue identifies a role for isolated lymphoid follicles in priming of region-specific immunity. Immunity 52, 557–570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Habowski, A. N. et al. Transcriptomic and proteomic signatures of stemness and differentiation in the colon crypt. Commun. Biol. 3, 453 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lundqvist, C., Baranov, V., Hammarström, S., Athlin, L. & Hammarström, M. L. Intra-epithelial lymphocytes. Evidence for regional specialization and extrathymic T cell maturation in the human gut epithelium. Int. Immunol. 7, 1473–1487 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Lockyer, M. G. & Petras, R. E. in Histology for Pathologists (ed. Mills, S.) Ch. 25, 664–676 (Wolters Kluwer, 2019).

  68. Pittman, M. E. & Yantiss, R. K. in Histology for Pathologists (ed. Mills, S.) Ch. 26, 677–691 (Wolters Kluwer, 2019).

  69. Kriz, W. & Bankir, L. A standard nomenclature for structures of the kidney. The Renal Commission of the International Union of Physiological Sciences (IUPS). Kidney Int. 33, 1–7 (1988).

    Article  CAS  PubMed  Google Scholar 

  70. Lake, B. B. et al. A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nat. Commun. 10, 2832 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Barry, D. M. et al. Molecular determinants of nephron vascular specialization in the kidney. Nat. Commun. 10, 5705 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Menon, R. et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight 5, e133267 (2020).

    Article  PubMed Central  Google Scholar 

  73. Ransick, A. et al. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev. Cell 51, 399–413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Limbutara, K., Chou, C. L. & Knepper, M. A. Quantitative proteomics of all 14 renal tubule segments in rat. J. Am. Soc. Nephrol. 31, 1255–1266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc. Natl Acad. Sci. USA 117, 15874–15883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Standring, S. Gray’s Anatomy: The Anatomical Basis of Clinical Practice (Elsevier, 2016).

  79. Haefeli-Bleuer, B. & Weibel, E. R. Morphometry of the human pulmonary acinus. Anat. Rec. 220, 401–414 (1988).

    Article  CAS  PubMed  Google Scholar 

  80. Whitsett, J. A., Kalin, T. V., Xu, Y. & Kalinichenko, V. V. Building and regenerating the lung cell by cell. Physiol. Rev. 99, 513–554 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu, Y. et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 1, e90558 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 6, eaba1983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, A. et al. Single-cell multiomic profiling of human lungs reveals cell-type-specific and age-dynamic control of SARS-CoV2 host genes. eLife 9, e62522 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Deprez, M. et al. A single-cell atlas of the human healthy airways. Am. J. Respir. Crit. Care Med. 202, 1636–1645 (2019).

    Article  Google Scholar 

  87. Medeiros, L. J. et al. in Tumors of the Lymph Node and Spleen Ch. 1 (American Registry of Pathology, 2017).

  88. Medeiros, L. J. et al. Tumors of the Lymph Node and Spleen (American Registry of Pathology, 2017).

  89. O’Malley, D. P., George, T. I., Orazi, A. & Abbondanzo, S. L. in Benign and Reactive Conditions of Lymph Node and Spleen Ch. 1 (American Registry of Pathology, 2009).

  90. Angel, C. E. et al. Distinctive localization of antigen-presenting cells in human lymph nodes. Blood 113, 1257–1267 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. James, K. R. et al. Distinct microbial and immune niches of the human colon. Nat. Immunol. 21, 343–353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Link, A. et al. Association of T-zone reticular networks and conduits with ectopic lymphoid tissues in mice and humans. Am. J. Pathol. 178, 1662–1675 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Park, S. M. et al. Mapping the distinctive populations of lymphatic endothelial cells in different zones of human lymph nodes. PLoS ONE 9, e106814 (2014).

    Article  Google Scholar 

  94. Xiang, M. et al. A single-cell transcriptional roadmap of the mouse and human lymph node lymphatic vasculature. Front. Cardiovasc. Med. 7, 52 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Takeda, A. et al. Single-cell survey of human lymphatics unveils marked endothelial cell heterogeneity and mechanisms of homing for neutrophils. Immunity 51, 561–572 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Kunicki, M. A., Hernandez, L. C. A., Davis, K. L., Bacchetta, R. & Roncarolo, M. G. Identity and diversity of human peripheral Th and T regulatory cells defined by single-cell mass cytometry. J. Immunol. 200, 336–346 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Pusztaszeri, M. P., Seelentag, W. & Bosman, F. T. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J. Histochem. Cytochem. 54, 385–395 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Reynolds, G. et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 371, eaba6500 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dyring-Anderson, B. et al. Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. Nat. Commun. 11, 5587 (2020).

    Article  Google Scholar 

  100. Fuchs, E. Keratins and the skin. Annu. Rev. Cell Dev. Biol. 11, 123–153 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Nestle, F. O., Meglio, P. D., Qin, J. Z. & Nickoloff, B. J. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9, 679–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Laverdet, B. et al. Skin innervation: important roles during normal and pathological cutaneous repair. Histol. Histopathol. 30, 875–892 (2015).

    CAS  PubMed  Google Scholar 

  103. Ryan, T. J. The blood vessels of the skin. J. Invest. Dermatol. 67, 110–118 (1976).

    Article  CAS  PubMed  Google Scholar 

  104. Popescu, D. M. A Single Cell Atlas of Adult Healthy, Psoriatic and Atopic Dermatitis Skin (2021); https://developmentcellatlas.ncl.ac.uk/datasets/hca_skin_portal

  105. Bos, J. D. et al. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J. Invest. Dermatol. 88, 569–573 (1987).

    Article  CAS  PubMed  Google Scholar 

  106. Schweizer, J. et al. New consensus nomenclature for mammalian keratins. J. Cell Biol. 174, 169–174 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Eberl, G., Colonna, M., Di Santo, J. P. & McKenzie, A. N. J. Innate lymphoid cells: a new paradigm in immunology. Science 348, aaa6566 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ali, N. & Rosenblum, M. D. Regulatory T cells in skin. Immunology 152, 372–381 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Huber, W. E. et al. A tissue-restricted cAMP transcriptional response: SOX10 modulates alpha-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. J. Biol. Chem. 278, 45224–45230 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Haniffa, M., Gunawan, M. & Jardine, L. Human skin dendritic cells in health and disease. J. Dermatol. Sci. 77, 85–92 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cesta, M. F. Normal structure, function, and histology of the spleen. Toxicol. Pathol. 34, 455–465 (2006).

    Article  PubMed  Google Scholar 

  112. Madissoon, E. et al. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biol. 21, 1 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pack, M. et al. DEC-205/CD205+ dendritic cells are abundant in the white pulp of the human spleen, including the border region between the red and white pulp. Immunology 123, 438–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Steiniger, B. S. Human spleen microanatomy: why mice do not suffice. Immunology 145, 334–346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Steiniger, B. S., Seiler, A., Lampp, K., Wilhelmi, V. & Stachniss, V. B lymphocyte compartments in the human splenic red pulp: capillary sheaths and periarteriolar regions. Histochem. Cell Biol. 141, 507–518 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Steiniger, B. S., Stachniss, V., Schwarzbach, H. & Barth, P. J. Phenotypic differences between red pulp capillary and sinusoidal endothelia help localizing the open splenic circulation in humans. Histochem. Cell Biol. 128, 391–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Qiu, J. et al. The characteristics of vessel lining cells in normal spleens and their role in the pathobiology of myelofibrosis. Blood Adv. 2, 1130–1145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lewis, S. M., Williams, A. & Eisenbarth, S. C. Structure and function of the immune system in the spleen. Sci. Immunol. 4, eaau6085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mittag, D. et al. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J. Immunol. 186, 6207–6217 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Cheng, H. W. et al. Origin and differentiation trajectories of fibroblastic reticular cells in the splenic white pulp. Nat. Commun. 10, 1739 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Van Krieken, J. H. J. M. & Te Velde, J. Immunohistology of the human spleen: an inventory of the localization of lymphocyte subpopulations. Histopathology 10, 285–294 (1986).

    Article  PubMed  Google Scholar 

  122. Van Krieken, J. H. J. M., Te Velde, J., Leenheers-Binnendijk, L. & Van de Velde, C. J. H. The human spleen; a histological study in splenectomy specimens embedded in methylmethacrylate. Histopathology 9, 571–585 (1985).

    Article  PubMed  Google Scholar 

  123. Bautista, J. L. et al. Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla. Nat. Commun. 12, 1096 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Haynes, B. F. The human thymic microenvironment. Adv. Immunol. 36, 87–142 (1984).

    Article  CAS  PubMed  Google Scholar 

  125. Park, J. E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pearse, G. Normal structure, function and histology of the thymus. Toxicol. Pathol. 34, 504–514 (2006).

    Article  PubMed  Google Scholar 

  127. Suster, S. & Rosai, J. Histology of the normal thymus. Am. J. Surg. Pathol. 14, 284–303 (1990).

    Article  CAS  PubMed  Google Scholar 

  128. Mignini, F. et al. Neuro-immune modulation of the thymus microenvironment (Review). Int. J. Mol. Med. 33, 1392–1400 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Stoeckle, C. et al. Isolation of myeloid dendritic cells and epithelial cells from human thymus. J. Vis. Exp. 79, e50951 (2013).

    Google Scholar 

  130. Marcovecchio, G. E. et al. Thymic epithelium abnormalities in DiGeorge and Down syndrome patients contribute to dysregulation in T cell development. Front. Immunol. 10, 447 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wakimoto, T. et al. Identification and characterization of human thymic cortical dendritic macrophages that may act as professional scavengers of apoptotic thymocytes. Immunobiology 213, 837–847 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Lavaert, M. et al. Integrated scRNA-seq identifies human postnatal thymus seeding progenitors and regulatory dynamics of differentiating immature thymocytes. Immunity 52, 1088–1104 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Nuñez, S. et al. The human thymus perivascular space is a functional niche for viral-specific plasma cells. Sci. Immunol. 1, eaah4447 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Bendriss-Vermare, N. et al. Human thymus contains IFN-α-producing CD11c, myeloid CD11c+, and mature interdigitating dendritic cells. J. Clin. Invest. 107, 835–844 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Netter, F. H. Atlas of Human Anatomy 7th edn (Elsevier, 2019).

  136. Kandathil, A. & Chamarthy, M. Pulmonary vascular anatomy & anatomical variants. Cardiovasc. Diagn. Ther. 8, 201–207 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Perlmutter, D. & Rhoton, A. L. Jr Microsurgical anatomy of the distal anterior cerebral artery. J. Neurosurg. 49, 204–228 (1978).

    Article  CAS  PubMed  Google Scholar 

  138. Hacein-Bey, L. et al. The ascending pharyngeal artery: branches, anastomoses, and clinical significance. AJNR Am. J. Neuroradiol. 23, 1246–1256 (2002).

    PubMed  PubMed Central  Google Scholar 

  139. Vuong, S. M., Jeong, W. J., Morales, H. & Abruzzo, T. A. Vascular diseases of the spinal cord: infarction, hemorrhage, and venous congestive myelopathy. Semin. Ultrasound CT MR 37, 466–481 (2016).

    Article  PubMed  Google Scholar 

  140. Picel, A. C., Hsieh, T. C., Shapiro, R. M., Vezeridis, A. M. & Isaacson, A. J. Prostatic artery embolization for benign prostatic hyperplasia: patient evaluation, anatomy, and technique for successful treatment. Radiographics 39, 1526–1548 (2019).

    Article  PubMed  Google Scholar 

  141. Vummidi, D. et al. Pseudolesion in segment IV A of the liver from vein of Sappey secondary to SVC obstruction. Radiol. Case Rep. 5, 394 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science https://doi.org/10.1126/science.aau5324 (2018).

  144. International Human Genome Sequencing (IHGS) Consortium Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  Google Scholar 

  145. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Visible Human Project (VHP) Data Sets (NLM, 2020); https://www.nlm.nih.gov/databases/download/vhp.html

  147. Fair Principles (Go Fair, 2021); https://www.go-fair.org/fair-principles

  148. CCF Anatomical Structures, Cell Types and Biomarkers (ASCT+B) Tables (HuBMAP Consortium, 2021); https://hubmapconsortium.github.io/ccf/pages/ccf-anatomical-structures.html

  149. CCF 3D Reference Object Library (HuBMAP Consortium, 2021); https://hubmapconsortium.github.io/ccf/pages/ccf-3d-reference-library.html

  150. Graphics Language Transmission Format (glTF) a File Format Specification for 3D Scenes and Models (Khronos Group, 2021); https://www.khronos.org

  151. CCF Registration User Interface (HuBMAP Consortium, 2021); https://hubmapconsortium.github.io/ccf-ui/rui

  152. CCF Exploration User Interface (HuBMAP Consortium, 2021); https://portal.hubmapconsortium.org/ccf-eui

  153. Human Biomolecular Atlas Program (HuBMAP) Data Portal (NIH, 2020); https://portal.hubmapconsortium.org

  154. CCF User Interfaces (RUI, EUI) (HuBMAP Consortium, 2021); https://github.com/hubmapconsortium/ccf-ui

  155. Jardine, L. et al. Blood and immune development in human fetal bone marrow and Down syndrome. Nature 598, 327–331 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Stephenson, E. et al. Single-cell multi-omics analysis of the immune response in COVID-19. Nat. Med. 27, 904–916 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Preprint at bioRxiv https://doi.org/10.1101/2021.07.28.454201 (2021).

  158. Zhuo, L., Huang, L., Yang, Z., Li, G. & Wang, L. A comprehensive analysis of NPHS1 gene mutations in patients with sporadic focal segmental glomerulosclerosis. BMC Med. Genet. 20, 111 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ong, E. et al. Modelling kidney disease using ontology: insights from the Kidney Precision Medicine Project. Nat. Rev. Nephrol. 16, 686–696 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Barwinska, D. et al. Molecular characterization of the human kidney interstitium in health and disease. Sci. Adv. 7, eabd3359 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. ASCT+B Reporter (HuBMAP Consortium, 2021); https://hubmapconsortium.github.io/ccf-asct-reporter

  162. Majumder, P. P., Mhlanga, M. M. & Shalek, A. K. The Human Cell Atlas and equity: lessons learned. Nat. Med. 26, 1509–1511 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Spatial Biology Europe: Online (HuBMAP Consortium, 2021); https://cns-iu.github.io/workshops/2021-2004-2014_spatial_biology_europe_online

  164. Azimuth App for reference-based single-cell analysis (Satija Lab, 2021); https://azimuth.hubmapconsortium.org/

  165. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Osumi-Sutherland, D. et al. Cell type ontologies of the Human Cell Atlas. Nat. Cell Biol. https://doi.org/10.1038/s41556-021-00787-7 (2021).

  167. Radtke, A. J. et al. IBEX: an open and extensible method for high content multiplex imaging of diverse tissues. Preprint at https://arxiv.org/abs/2107.11364 (2021).

  168. Hickey, J. W. et al. Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging. Preprint at https://arxiv.org/abs/2107.07953 (2021).

  169. Manz, T. et al. Viv: multiscale visualization of high-resolution multiplexed bioimaging data on the web. Preprint at OSF https://doi.org/10.31219/osf.io/wd2gu (2020).

  170. Balhoff, J. & Curtis, C. K. Ubergraph (2021); https://github.com/INCATools/ubergraph

  171. Li, W., Germain, R. N. & Gerner, M. Y. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proc. Natl Acad. Sci. USA 114, E7321–E7330 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Fedorov, A. et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30, 1323–1341 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Slicer Community. 3D Slicer image computing platform (2021); https://www.slicer.org/

  174. ZBrush, the all-in-one digital sculpting solution (Pixologic, 2021); https://pixologic.com/

  175. Maya: 3D computer animation, modeling, simulation, and rendering software (Autodesk, 2021); https://www.autodesk.com/products/maya/overview

Download references

Acknowledgements

We thank B. B. Lake from University of California, San Diego, for assistance with annotations and analysing the single-nucleus RNA-seq HUBMAP data for several of the markers in the kidney ASCT+B tables; B. Steck and R. Dull from the University of Michigan for assistance with the nomenclature and curation of kidney partonomy; S. Winfree, IUPUI, for discussions regarding the kidney ASCT+B table; and staff at the KPMP, especially the Tissue Interrogation Sites and the Controlled Cell Vocabulary working group, for guidance and development of the initial sets of ASCT+B kidney tables. We acknowledge L. Yao for segmenting and optimizing the mouse popliteal lymph node model from high-resolution microscopy data. The work was funded, in part, by NIH Awards OT2OD026671, U54DK120058, 1UH3CA246594, 1U54AI142766, 1UG3CA256960, 1UG3HL145609, U54HL145608, U54HL145611, UH3DK114933, DK110814 and DK107350; National Institute of Allergy and Infectious Diseases (NIAID), Department of Health and Human Services under BCBB Support Services Contract HHSN316201300006W/HHSN27200002; the Intramural Research Program of the NIH at NIAID; and Helmsley Charitable Trust 2018PG-T1D071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katy Börner.

Ethics declarations

Competing interests

In the past 3 years, S.A.T. has received remuneration for consulting and Scientific Advisory Board membership from Genentech, Roche, Biogen, GlaxoSmithKline, Foresite labs, Qiagen and Transition Bio and she is a co-founder and equity holder of Transition Bio. R.M. receives research funding from Bayer and Amgen and serves as a consultant for Myokardia/BMS and Third Pole; he is a co-founder of Patch Inc; he is a co-inventor for a patent no. PCT/US2O12/O22119 on pharmacologic BMP inhibitors (along with Mass General Brigham) for which he receives royalties from Keros Therapeutics, Inc.; he also receives royalties from UpToDate for scientific content authorship. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Börner, K., Teichmann, S.A., Quardokus, E.M. et al. Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nat Cell Biol 23, 1117–1128 (2021). https://doi.org/10.1038/s41556-021-00788-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-021-00788-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing