Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of tertiary alkyl amines via photoinduced copper-catalysed nucleophilic substitution

Abstract

In view of the high propensity of tertiary alkyl amines to be bioactive, the development of new methods for their synthesis is an important challenge. Transition-metal catalysis has the potential to greatly expand the scope of nucleophilic substitution reactions of alkyl electrophiles; unfortunately, in the case of alkyl amines as nucleophiles, only one success has been described so far: the selective mono-alkylation of primary amines to form secondary amines. Here, using photoinduced copper catalysis, we report the synthesis of tertiary alkyl amines from secondary amines and unactivated alkyl electrophiles, two readily available coupling partners. Utilizing an array of tools, we have analysed the mechanism of this process; specifically, we have structurally characterized the three principal copper-based intermediates that are detected during catalysis and provided support for the key steps of the proposed catalytic cycle, including the coupling of a copper(II)–amine intermediate with an alkyl radical to form a C–N bond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tertiary alkyl amines.
Fig. 2: Mechanistic studies, steps 1 and 2 of the catalytic cycle.
Fig. 3: Mechanistic studies, steps 3 and 4 of the catalytic cycle.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and its Supplementary Information (experimental procedures and characterization data). Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2346103 (20), 2346099 (23), 2346098 (26), 2346097 (28), 2346096 (34), 2346086 (A, PCuI(OPh)), 2346089 (G, PCuI(MSA), 2346084 ([(MSA)CuII(OPh)]4), 2346093(H, [(MSA)(HR2N)CuII(μ-OPh)]2), 2346085 (E1, (MSA)CuII(OAr1)(NR2H)2), 2346102 ([(MSA)CuII(OAr1)]2), 2346100 ((MSA)2CuII(NR2H)), 2346094 ((MSA)2CuII(NR12H)) and 2346095 ((MSA)2CuII(NR12H)2). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/ (or from Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, United Kingdom; fax: +44-1223-336-033; email: [email protected]).

References

  1. Manallack, D. T. et al. A chemogenomic analysis of ionization constants—implications for drug discovery. ChemMedChem 8, 242–255 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Knölker, H.-J. The Alkaloids Vol. 90 (Elsevier, 2023).

  3. Funayama, S. & Cordell, G. A. Alkaloids: A Treasury of Poisons and Medicines (Academic Press, 2014).

  4. Sodano, T. M., Combee, L. A. & Stephenson, C. R. J. Recent advances and outlook for the isosteric replacement of anilines. ACS Med. Chem. Lett. 11, 1785–1788 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mykhailiuk, P. K. Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem. 17, 2839–2849 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Neumann, H.-G. Aromatic amines: mechanisms of carcinogenesis and implications for risk assessment. Front. Biosci. 15, 1119–1130 (2010).

    Article  CAS  Google Scholar 

  8. Ricci, A. & Bernardi, L. Methodologies in Amine Synthesis: Challenges and Applications (Wiley, 2021).

  9. Marvin, C. C. in Comprehensive Organic Synthesis (eds Knochel, P. & Molander, G. A.) Vol. 6.02, 34–99 (Elsevier, 2014).

  10. Afanasyev, O. I., Kuchuk, E., Usanov, D. L. & Chusov, D. Reductive amination in the synthesis of pharmaceuticals. Chem. Rev. 119, 11857–11911 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Shi, F. & Cui, X. Catalytic Amination for N-Alkyl Amine Synthesis (Academic Press, 2018).

  12. Trowbridge, A., Walton, S. M. & Gaunt, M. J. New strategies for the transition-metal catalyzed synthesis of alkyl amines. Chem. Rev. 120, 2613–2692 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Kumar, R., Flodén, N. J., Whitehurst, W. G. & Gaunt, M. J. A general carbonyl alkylative amination for tertiary amine synthesis. Nature 581, 415–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brown, D. G. & Böstrom, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Górski, B., Barthelemy, A.-L., Douglas, J. J., Juliá, F. & Leonori, D. Copper-catalysed amination of alkyl iodides enabled by halogen-atom transfer. Nat. Catal. 4, 623–630 (2021).

    Article  Google Scholar 

  16. Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bissember, A. C., Lundgren, R. J., Creutz, S. E., Peters, J. C. & Fu, G. C. Transition-metal-catalyzed alkylations of amines with alkyl halides: photoinduced, copper-catalyzed couplings of carbazoles. Angew. Chem. Int. Ed. 52, 5129–5133 (2013).

    Article  CAS  Google Scholar 

  18. Do, H.-Q., Bachman, S., Bissember, A. C., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature. J. Am. Chem. Soc. 136, 2162–2167 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Peacock, D. M., Roos, C. B. & Hartwig, J. F. Palladium-catalyzed cross coupling of secondary and tertiary alkyl bromides with a nitrogen nucleophile. ACS Cent. Sci. 2, 647–652 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahn, J. M., Peters, J. C. & Fu, G. C. Design of a photoredox catalyst that enables the direct synthesis of carbamate-protected primary amines via photoinduced, copper-catalyzed N-alkylation reactions of unactivated secondary halides. J. Am. Chem. Soc. 139, 18101–18106 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, C., Peters, J. C. & Fu, G. C. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity. Nature 596, 250–256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dow, N. W., Cabré, A. & MacMillan, D. W. C. A general N-alkylation platform via copper metallaphotoredox and silyl radical activation of alkyl halides. Chem 7, 1827–1842 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matier, C. D., Schwaben, J., Peters, J. C. & Fu, G. C. Copper-catalyzed alkylation of alkyl amines induced by visible light. J. Am. Chem. Soc. 139, 17707–17710 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abdel-Magid, A. F. & Mehrman, S. J. A review on the use of sodium triacetoxyborohydride in the reductive amination of ketones and aldehydes. Org. Process Res. Dev. 10, 971–1031 (2006).

    Article  CAS  Google Scholar 

  25. Hutchins, R. O., Su, W.-Y., Sivakumar, R., Cistone, F. & Stercho, Y. P. Stereoselective reductions of substituted cyclohexyl and cyclopentyl carbon–nitrogen π systems with hydride reagents. J. Org. Chem. 48, 3412–3422 (1983).

    Article  CAS  Google Scholar 

  26. Gilbert, S. H., Tin, S., Fuentes, J. A., Fanjul, T. & Clarke, M. L. Rhodium catalysts derived from a fluorinated phanephos ligand are highly active catalysts for direct asymmetric reductive amination of secondary amines. Tetrahedron 80, 131863 (2021).

    Article  CAS  Google Scholar 

  27. Nandhu, C. T., Aneeja, T. & Anilkumar, G. Advances and perspectives in the rhodium catalyzed reductive amination reactions. J. Organomet. Chem. 965–966, 122332 (2022).

    Article  Google Scholar 

  28. Gilbert, S. H., Viseur, V. & Clarke, M. L. A consecutive process for C–C and C–N bond formation with high enantio- and diastereo-control: direct reductive amination of chiral ketones using hydrogenation catalysts. Chem. Commun. 55, 6409–6412 (2019).

    Article  CAS  Google Scholar 

  29. Gianatassio, R. et al. Strain-release amination. Science 351, 241–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hughes, J. M. E., Scarlata, D. A., Chen, A. C.-Y., Burch, J. D. & Gleason, J. L. Aminoalkylation of [1.1.1]propellane enables direct access to high-value 3-alkylbicyclo[1.1.1]pentan-1-amines. Org. Lett. 21, 6800–6804 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Bergamaschi, E. & Teskey, C. Bioisosteres of meta-substituted benzenes. Nachr. Chem. 71, 68–71 (2023).

    Article  CAS  Google Scholar 

  32. Frank, N. et al. Synthesis of meta-substituted arene bioisosteres from [3.1.1] propellane. Nature 611, 721–726 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Yu, Z. & Shi, L. Synthetic routes to bicyclo[1.1.1]pentylamines: booming toolkits for drug design. Org. Chem. Front. 9, 3591–3597 (2022).

    Article  CAS  Google Scholar 

  34. Nomura, M. et al. Discovery of cyclic amine-substituted benzoic acids as PPARα agonists. Bioorg. Med. Chem. Lett. 22, 334–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Duong, L. T., Leung, A. T. & Langdahl, B. Cathepsin K inhibition: a new mechanism for the treatment of osteoporosis. Calcif. Tissue Int. 98, 381–397 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, X. et al. Copper-mediated synthesis of drug-like bicyclopentanes. Nature 580, 220–226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saveant, J.-M. Dissociative electron transfer. New tests of the theory in the electrochemical and homogeneous reduction of alkyl halides. J. Am. Chem. Soc. 114, 10595–10602 (1992).

    Article  CAS  Google Scholar 

  38. Cho, H., Suematsu, H., Oyala, P. H., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed enantioconvergent alkylations of anilines by racemic tertiary electrophiles: synthesis and mechanism. J. Am. Chem. Soc. 144, 4550–4558 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, S., Peng, Q., Ou, Q. & Shuai, Z. Strong solid-state fluorescence induced by restriction of the coordinate bond bending in two-coordinate copper(I)–carbene complexes. Inorg. Chem. 58, 14403–14409 (2019).

  40. Demarteau, J., Debuigne, A. & Detrembleur, C. Organocobalt complexes as sources of carbon-centered radicals for organic and polymer chemistries. Chem. Rev. 119, 6906–6955 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Branchaud, B. P., Meier, M. S. & Choi, Y. Alkyl-alkenyl cross coupling via alkyl cobaloxime radical chemistry. An alkyl equivalent to the Heck reaction compatible with common organic functional groups. Tetrahedron Lett. 29, 167–170 (1988).

    Article  CAS  Google Scholar 

  42. Pearson, R. G. Hard and soft acids and bases—the evolution of a chemical concept. Coord. Chem. Rev. 100, 403–425 (1990).

    Article  CAS  Google Scholar 

  43. Clark, K. F., Dimitrova, D. & Murphy, J. A. in Science of Synthesis, Free Radicals: Fundamentals and Applications in Organic Synthesis 2 (eds Fensterbank, L. & Ollivier, C.) 1–82 (Thieme, 2021).

  44. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support has been provided by the National Institutes of Health (National Institute of General Medical Sciences: R35–GM145315, Fu group), the Korea Foundation for Advanced Studies (graduate research fellowship to H.C.), the Swiss National Science Foundation (grant P2SKP2_191321 to G.Z.), the Beckman Institute at Caltech, the Dow Next-Generation Educator Fund (grant to Caltech) and Takasago International Corporation. We thank J. C. Peters, R. G. Hadt, P. H. Oyala (EPR Facility), M. K. Takase (X-ray Crystallography Facility), D. VanderVelde (NMR Facility), S. C. Virgil (Center for Catalysis and Chemical Synthesis), J. R. Winkler (Laser Resource Center), W. W. Brennessel (Mass Spectrometry Resource Laboratory), C. Chen, F. Schneck, S. Alabugin, D. A. Cagan, P. Garrido Barros, V. Hubble, C. M. Johansen, A. N. Kim, L. N. V. Le and M. Li for technical assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.C. discovered and optimized the reaction, investigated its scope and performed mechanistic studies. X.T. investigated the scope of the reaction and optimized the three-component coupling. G.Z. investigated the scope of the reaction. R.L.A. performed density functional theory (DFT) calculations. All authors actively participated in writing the manuscript and contributed to the analysis and interpretation of the results.

Corresponding author

Correspondence to Gregory C. Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28 and Tables 1–9.

Supplementary Data 1

Cartesian coordinates of calculated structures.

Supplementary Data 2

Crystallographic data for compound 20; CCDC reference 2346103.

Supplementary Data 3

Crystallographic data for compound 23; CCDC reference 2346099.

Supplementary Data 4

Crystallographic data for compound 26; CCDC reference 2346098.

Supplementary Data 5

Crystallographic data for compound 28; CCDC reference 2346097.

Supplementary Data 6

Crystallographic data for compound 34; CCDC reference 2346096.

Supplementary Data 7

Crystallographic data for compound A, PCuI(OPh); CCDC reference 2346086.

Supplementary Data 8

Crystallographic data for compound G, PCuI(MSA); CCDC reference 2346089.

Supplementary Data 9

Crystallographic data for compound [(MSA)CuII(OPh)]4; CCDC reference 2346084.

Supplementary Data 10

Crystallographic data for compound H, [(MSA)(HR2N)CuII(μ-OPh)]2; CCDC reference 2346093.

Supplementary Data 11

Crystallographic data for compound E1, (MSA)CuII(OAr1)(NR2H)2; CCDC reference 2346085.

Supplementary Data 12

Crystallographic data for compound [(MSA)CuII(OAr1)]2; CCDC reference 2346102.

Supplementary Data 13

Crystallographic data for compound (MSA)2CuII(NR2H); CCDC reference 2346100.

Supplementary Data 14

A CIF file for compound (MSA)2CuII(NR12H); CCDC reference 2346094.

Supplementary Data 15

A CIF file for compound (MSA)2CuII(NR12H)2; CCDC reference 2346095.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H., Tong, X., Zuccarello, G. et al. Synthesis of tertiary alkyl amines via photoinduced copper-catalysed nucleophilic substitution. Nat. Chem. 17, 271–278 (2025). https://doi.org/10.1038/s41557-024-01692-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01692-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing