Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of pillar-layered metal–organic frameworks with variable backbones through sequence control

Abstract

The properties and functions of metal–organic frameworks (MOFs) can be tailored by tuning their structure, including their shape, porosity and topology. However, the design and synthesis of complex structures in a predictable manner remains challenging. Here we report the preparation of a series of isomeric pillar-layered MOFs, and we show that their three-dimensional topology can be controlled by altering the layer stacking. This enables variability on the backbone structure, as well as diverse spatial arrangements of pillars and the partitioning of pore space into several kinds of cages packing in distinct sequences. These sequence-controlled MOFs (SC-MOF-1–6) showcase ultrahigh benzene capture capacities at low-pressure and high volumetric and gravimetric uptake performances in high-pressure methane storage. We provide the construction principles of the SC-MOFs and predict nearly 2,000 possible SC-networks with sophisticated composition sequences at the atomic level by using a Python script.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sequence-controlled materials.
Fig. 2: Schematic representation of topology-guided synthesis of pillar-layered SC-MOF-1.
Fig. 3: Layer and pillar sequences in SC-MOF-2–6.
Fig. 4: Representation of cage sequences in SC-MOF-1–6 viewed from a axis.
Fig. 5: The layer, pillar and cage sequences in the predicted SC-MOFs.
Fig. 6: Ar, CH4 and benzene adsorption studies for SC-MOF-1–4.

Similar content being viewed by others

Data availability

All crystallographic data have been deposited with the Cambridge Crystallographic Data Centre, with reference numbers 2236913 (SC-MOF-1), 2236914 (SC-MOF-2), 2236915 (SC-MOF-3), 2236916 (SC-MOF-4), 2236917 (SC-MOF-5) and 2387166 (SC-MOF-6). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data are included in the Supplementary Information. Source data are available via figshare at https://doi.org/10.6084/m9.figshare.27828132 (ref. 54). Source data are provided with this paper.

Code availability

The Python script is available via figshare at https://doi.org/10.6084/m9.figshare.27828132 (ref. 54).

References

  1. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  3. Zhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 112, 1001–1033 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Adil, K. et al. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 46, 3402–3430 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Corma, A., García, H. & Llabrés i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Cui, Y., Yue, Y., Qian, G. & Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 112, 1126–1162 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y. et al. Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev. 354, 28–45 (2018).

    Article  CAS  Google Scholar 

  11. Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, L. J. et al. Synthesis and characterization of metal–organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53, 5881–5883 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Castillo-Blas, C. et al. Addressed realization of multication complex arrangements in metal–organic frameworks. Sci. Adv. 3, e1700773 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ji, Z., Li, T. & Yaghi, O. M. Sequencing of metals in multivariate metal–organic frameworks. Science 369, 674–780 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Jia, H., Han, Q., Luo, W., Cong, H. & Deng, H. Sequence control of metals in MOF by coordination number precoding for electrocatalytic oxygen evolution. Chem. Catal. 2, 84–101 (2022).

    Article  CAS  Google Scholar 

  16. Liu, H. et al. Modulating charges of dual sites in multivariate metal–organic frameworks for boosting selective aerobic epoxidation of alkenes. J. Am. Chem. Soc. 145, 11085–11096 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, J.-P. & Kitagawa, S. Supramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of Ag(I)/Cu(I) 3,3′,5,5′-tetrametyl-4,4′-bipyrazolate. J. Am. Chem. Soc. 130, 907–917 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, X.-S. et al. Enhancing H2 uptake by ‘Close-Packing’ alignment of open copper sites in metal–organic frameworks. Angew. Chem. Int. Ed. 47, 7263–7266 (2008).

    Article  CAS  Google Scholar 

  19. Deria, P. et al. Framework-topology-dependent catalytic activity of zirconium-based (porphinato)zinc(II) MOFs. J. Am. Chem. Soc. 138, 14449–14457 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, L. et al. Nanoporous water-stable Zr-based metal–organic frameworks for water adsorption. ACS Appl. Nano Mater. 4, 4346–4350 (2021).

    Article  CAS  Google Scholar 

  21. Li, X. et al. Tuning metal–organic framework (MOF) topology by regulating ligand and secondary building unit (SBU) geometry: structures built on 8‑connected M6 (M = Zr, Y) clusters and a flexible tetracarboxylate for propane-selective propane/propylene separation. J. Am. Chem. Soc. 144, 21702–21709 (2022).

    Article  PubMed  Google Scholar 

  22. Chun, H., Dybtsev, D. N., Kim, H. & Kim, K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem. Eur. J. 11, 3521–3529 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Dutta, A., Wong-Foy, A. G. & Matzger, A. J. Coordination copolymerization of three carboxylate linkers into a pillared layer framework. Chem. Sci. 5, 3729–3734 (2014).

    Article  CAS  Google Scholar 

  24. Luo, X.-L., Yin, Z., Zeng, M.-H. & Kurmoo, M. The construction, structures, and functions of pillared layer metal–organic frameworks. Inorg. Chem. Front. 3, 1208–1226 (2016).

    Article  CAS  Google Scholar 

  25. Zarekarizi, F., Joharian, M. & Morsali, A. Pillar-layered MOFs: functionality, interpenetration, flexibility and applications. J. Mater. Chem. A 6, 19288–19329 (2018).

    Article  CAS  Google Scholar 

  26. Liu, L. et al. Integrating the pillared-layer strategy and pore-space partition method to construct multicomponent MOFs for C2H2/CO2 separation. J. Am. Chem. Soc. 142, 9258–9266 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. O’Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008).

    Article  PubMed  Google Scholar 

  28. Vleet, M. J. V., Weng, T., Li, X. & Schmidt, J. R. In situ, time-resolved, and mechanistic studies of metal–organic framework nucleation and growth. Chem. Rev. 118, 3681–3721 (2018).

    Article  PubMed  Google Scholar 

  29. Makal, T. A., Li, J.-R., Lu, W. & Zhou, H.-C. Methane storage in advanced porous materials. Chem. Soc. Rev. 41, 7761–7779 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Li, B., Wen, H.-M., Zhou, W., Xu, J. Q. & Chen, B. Porous metal–organic frameworks: promising materials for methane storage. Chem 1, 557–580 (2016).

    Article  CAS  Google Scholar 

  31. Peng, Y. et al. Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal–organic framework NU-111. Chem. Commun. 49, 2992–2994 (2013).

    Article  CAS  Google Scholar 

  32. Alezi, D. et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 137, 13308–13318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, Z. et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368, 297–303 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Mason, J. A., Veenstra, M. & Long, J. R. Evaluating metal–organic frameworks for natural gas storage. Chem. Sci. 5, 32–51 (2014).

    Article  CAS  Google Scholar 

  35. Chen, Z. et al. Fine tuning a robust metal–organic framework toward enhanced clean energy gas storage. J. Am. Chem. Soc. 143, 18838–18843 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, X. et al. Promotion of methane storage capacity with metal–organic frameworks of high porosity. Inorg. Chem. Front. 10, 454–459 (2023).

    Article  CAS  Google Scholar 

  37. Ben, T. et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48, 9457–9460 (2009).

    Article  CAS  Google Scholar 

  38. Jhung, S. H. et al. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 19, 121–124 (2007).

    Article  CAS  Google Scholar 

  39. Xie, L.-H., Liu, X.-M., He, T. & Li, J.-R. Metal–organic frameworks for the capture of trace aromatic volatile organic compounds. Chem 4, 1911–1927 (2018).

    Article  CAS  Google Scholar 

  40. Gwardiak, S., Szczęśniak, B., Choma, J. & Jaroniec, M. Benzene adsorption on synthesized and commercial metal–organic frameworks. J. Porous Mater. 26, 775–783 (2019).

    Article  CAS  Google Scholar 

  41. Macreadie, L. K. et al. Enhancing multicomponent metal–organic frameworks for low pressure liquid organic hydrogen carrier separations. Angew. Chem. Int. Ed. 59, 6090–6098 (2020).

    Article  CAS  Google Scholar 

  42. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71, 3–8 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  45. Lemmon, E., Huber, M. L. & McLinden, M. O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 (National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2007).

  46. Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. Q. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81–101 (2016).

    Article  CAS  Google Scholar 

  47. Casewit, C. J., Colwell, K. S. & Rappé, A. K. Application of a universal force field to organic molecules. J. Am. Chem. Soc. 114, 10035–10046 (1992).

    Article  CAS  Google Scholar 

  48. Martin, M. G. & Siepmann, J. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 102, 2569–2577 (1998).

    Article  CAS  Google Scholar 

  49. Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. III & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  Google Scholar 

  50. Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    Article  CAS  Google Scholar 

  51. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  52. Wick, C., Martin, M. G. & Siepmann, J. Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkenes and alkylbenzenes. J. Phys. Chem. B 104, 8008–8016 (2000).

    Article  CAS  Google Scholar 

  53. Kancharlapalli, S., Gopalan, A., Haranczyk, M. & Snurr, R. Q. Fast and accurate machine learning strategy for calculating partial atomic charges in metal–organic frameworks. J. Chem. Theory Comput. 17, 3052–3064 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Yuan, J. et al. Data for paper ‘Synthesis of pillar-layered metal–organic frameworks with variable backbones through sequence control’. figshare https://doi.org/10.6084/m9.figshare.27828132 (2024).

Download references

Acknowledgements

We thank the Analysis and Testing Center at Central China Normal University, Wuhan, China, for research support. We thank Q. Li for discussions in the stage of the paper preparation. This work was supported by the National Natural Science Foundation of China (grant numbers 22101093, B.T., 22125304 and 22032005, A.Z.), the Natural Science Foundation of Hubei Province, China (grant number 2022CFB163, B.T.), the Knowledge Innovation Program of Wuhan-Shuguang Project (B.T.) and the Fundamental Research Funds for the Central Universities (grant numbers CCNU22QN008 and CCNU24JCPT017, B.T.). We also acknowledge the computational resources provided by High-Performance Computing Center of Wuhan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

B.T. conceived the idea. J.Y., Q.P. and B.T. developed the concept, supervised the project and wrote the paper. J.Y. and M.Y. synthesized the compounds and performed the material characterizations. J.Y. and S.C. collected and analysed the gas/vapour adsorption data. B.Y. performed the GCMC simulations. Z.L., M.W. and A.Z. calculated the thermodynamic energies of the frameworks. J.Y., Q.P. and B.T. performed the structural analyses and new structure prediction.

Corresponding authors

Correspondence to Qingqing Pang, Mingyu Wan, Anmin Zheng or Binbin Tu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Volodymyr Bon, Daqiang Yuan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–190, Discussion and Tables 1–63.

Supplementary Data 1

Crystallographic information files for SC-MOF-1 (CCDC 2236913).

Supplementary Data 2

Crystallographic information files for SC-MOF-2 (CCDC 2236914).

Supplementary Data 3

Crystallographic information files for SC-MOF-3 (CCDC 2236915).

Supplementary Data 4

Crystallographic information files for SC-MOF-4 (CCDC 2236916).

Supplementary Data 5

Crystallographic information files for SC-MOF-5 (CCDC 2236917).

Supplementary Data 6

Crystallographic information files for SC-MOF-6 (CCDC 2387166).

Supplementary Data 7

Python code file for layer sequences calculation.

Supplementary Data 8

Layer sequences for the cases with 2–18 layers in the MRU.

Source data

Source Data Fig. 6

Statistical source data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Yang, M., Yang, B. et al. Synthesis of pillar-layered metal–organic frameworks with variable backbones through sequence control. Nat. Chem. 17, 421–428 (2025). https://doi.org/10.1038/s41557-024-01717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01717-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing