Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bipolar membranes for intrinsically stable and scalable CO2 electrolysis

Abstract

CO2 electrolysis allows the sustainable production of carbon-based fuels and chemicals. However, state-of-the-art CO2 electrolysers employing anion exchange membranes (AEMs) suffer from (bi)carbonate crossover, causing low CO2 utilization and limiting anode choices to those based on precious metals. Here we argue that bipolar membranes (BPMs) could become the primary option for intrinsically stable and efficient CO2 electrolysis without the use of scarce metals. Although both reverse- and forward-bias BPMs can inhibit CO2 crossover, forward-bias BPMs fail to solve the rare-earth metals requirement at the anode. Unfortunately, reverse-bias BPM systems presently exhibit comparatively lower Faradaic efficiencies and higher cell voltages than AEM-based systems. We argue that these performance challenges can be overcome by focusing research on optimizing the catalyst, reaction microenvironment and alkali cation availability. Furthermore, BPMs can be improved by using thinner layers and a suitable water dissociation catalyst, thus alleviating core remaining challenges in CO2 electrolysis to bring this technology to the industrial scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell configurations for electrochemical CO2R.
Fig. 2: Comparison of performance parameters for AEM-, BPM- and CEM-based CO2 electrolysers.
Fig. 3: Simplified membrane electrode assembly configurations and the voltage contributions of the different components.
Fig. 4: Strategies to alleviate BPM–catalyst interaction.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Salvatore, D. A. et al. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 6, 339–348 (2021).

    Google Scholar 

  2. Vass, Á. et al. Local chemical environment governs anode processes in CO2 electrolyzers. ACS Energy Lett. 6, 3801–3808 (2021).

    Google Scholar 

  3. Minke, C., Suermann, M., Bensmann, B. & Hanke-Rauschenbach, R. Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis? Int. J. Hydrog. Energy 46, 23581–23590 (2021).

    Google Scholar 

  4. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    Google Scholar 

  5. Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C. & Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 14, 781–814 (2021).

    Google Scholar 

  6. McQueen, N. et al. A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog. Energy 3, 032001 (2021).

    Google Scholar 

  7. Xie, X. et al. Oxygen evolution reaction in alkaline environment: material challenges and solutions. Adv. Funct. Mater. 32, 2110036 (2022).

    Google Scholar 

  8. Kim, B., Ma, S., Molly Jhong, H.-R. & Kenis, P. J. A. Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer. Electrochim. Acta 166, 271–276 (2015).

    Google Scholar 

  9. Monteiro, M. C. O., Philips, M. F., Schouten, K. J. P. & Koper, M. T. M. Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media. Nat. Commun. 12, 4943 (2021).

    Google Scholar 

  10. Erick, H. J. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Google Scholar 

  11. Bondue, C. J., Graf, M., Goyal, A. & Koper, M. T. M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc. 143, 279–285 (2021).

    Google Scholar 

  12. O’Brien, C. P. et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 6, 2952–2959 (2021).

    Google Scholar 

  13. Xie, K. et al. Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nat. Commun. 13, 3609 (2022).

    Google Scholar 

  14. Eriksson, B. et al. Mitigation of carbon crossover in CO2 electrolysis by use of bipolar membranes. J. Electrochem. Soc. 169, 034508 (2022).

    Google Scholar 

  15. Aydogan Gokturk, P. et al. The Donnan potential revealed. Nat. Commun. 13, 5880 (2022).

    Google Scholar 

  16. Pärnamäe, R. et al. Bipolar membranes: a review on principles, latest developments, and applications. J. Memb. Sci. 617, 118538 (2021).

    Google Scholar 

  17. Blommaert, M. A., Verdonk, J. A. H., Blommaert, H. C. B., Smith, W. A. & Vermaas, D. A. Reduced ion crossover in bipolar membrane electrolysis via increased current density, molecular size, and valence. ACS Appl. Energy Mater. 3, 5804–5812 (2020).

    Google Scholar 

  18. Li, Y. C. et al. Bipolar membranes inhibit product crossover in CO2 electrolysis cells. Adv. Sustain. Syst. 2, 1700187 (2018).

    Google Scholar 

  19. Disch, J., Ingenhoven, S. & Vierrath, S. Bipolar membrane with porous anion exchange layer for efficient and long-term stable electrochemical reduction of CO2 to CO. Adv. Energy Mater. 13, 2301614 (2023).

    Google Scholar 

  20. Subramanian, S., Middelkoop, J. & Burdyny, T. Spatial reactant distribution in CO2 electrolysis: balancing CO2 utilization and faradaic efficiency. Sustain. Energy Fuels 5, 6040–6048 (2021).

    Google Scholar 

  21. Liu, X., Monteiro, M. C. O. & Koper, M. T. M. Interfacial pH measurements during CO2 reduction on gold using a rotating ring-disk electrode. Phys. Chem. Chem. Phys. 25, 2897–2906 (2023).

    Google Scholar 

  22. Bui, J. C. et al. Analysis of bipolar membranes for electrochemical CO2 capture from air and oceanwater. Energy Environ. Sci. 16, 5076–5095 (2023).

    Google Scholar 

  23. Toh, W. L., Dinh, H. Q., Chu, A. T., Sauvé, E. R. & Surendranath, Y. The role of ionic blockades in controlling the efficiency of energy recovery in forward bias bipolar membranes. Nat. Energy 8, 1405–1416 (2023).

    Google Scholar 

  24. Dinh, H. Q., Toh, W. L., Chu, A. T. & Surendranath, Y. Neutralization short-circuiting with weak electrolytes erodes the efficiency of bipolar membranes. ACS Appl. Mater. Interfaces 15, 4001–4010 (2023).

    Google Scholar 

  25. Petrov, K. V. et al. Anion-exchange membranes with internal microchannels for water control in CO2 electrolysis. Sustain. Energy Fuels 6, 5077–5088 (2022).

    Google Scholar 

  26. Xu, Y. et al. A microchanneled solid electrolyte for carbon-efficient CO2 electrolysis. Joule 6, 1333–1343 (2022).

    Google Scholar 

  27. Kim, J. Y. ‘T. ’ et al. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat. Catal. 5, 288–299 (2022).

    Google Scholar 

  28. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Google Scholar 

  29. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Google Scholar 

  30. Xiao, T. et al. Proton antagonist membrane towards exclusive CO2 reduction. Nano Res. 16, 4589–4595 (2023).

    Google Scholar 

  31. Siritanaratkul, B. et al. Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular electrocatalysts. J. Am. Chem. Soc. 144, 7551–7556 (2022).

    Google Scholar 

  32. Guo, J. et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 8, 264–272 (2023).

    Google Scholar 

  33. Yan, Z., Hitt, J. L., Zeng, Z., Hickner, M. A. & Mallouk, T. E. Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer. Nat. Chem. 13, 33–40 (2021).

    Google Scholar 

  34. Endrődi, B. et al. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 6, 439–448 (2021).

    Google Scholar 

  35. Baumgartner, L. M., Koopman, C. I., Forner-Cuenca, A. & Vermaas, D. A. Narrow pressure stability window of gas diffusion electrodes limits the scale-up of CO2 electrolyzers. ACS Sustain. Chem. Eng. 10, 4683–4693 (2022).

    Google Scholar 

  36. Blommaert, M. A. et al. Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems. ACS Energy Lett. 6, 2539–2548 (2021).

    Google Scholar 

  37. Khalid, H., Najibah, M., Park, H. S., Bae, C. & Henkensmeier, D. Properties of anion exchange membranes with a focus on water electrolysis. Membranes (Basel) 12, 989 (2022).

    Google Scholar 

  38. Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. J. Electrochem. Soc. 165, J3371–J3377 (2018).

    Google Scholar 

  39. Yang, K. et al. Cation-driven increases of CO2 utilization in a bipolar membrane electrode assembly for CO2 electrolysis. ACS Energy Lett. 6, 4291–4298 (2021).

    Google Scholar 

  40. Kitto, D. & Kamcev, J. The need for ion-exchange membranes with high charge densities. J. Membr. Sci. 677, 121608 (2023).

    Google Scholar 

  41. Hyun, J. et al. Magnetic field-induced through-plane alignment of the proton highway in a proton exchange membrane. ACS Appl. Energy Mater. 3, 4619–4628 (2020).

    Google Scholar 

  42. Powers, D. et al. Freestanding bipolar membranes with an electrospun junction for high current density water splitting. ACS Appl. Mater. Interfaces 14, 36092–36104 (2022).

    Google Scholar 

  43. Xu, Z. et al. Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2. Nat. Commun. 14, 1619 (2023).

    Google Scholar 

  44. Chen, Y. et al. High-performance bipolar membrane development for improved water dissociation. ACS Appl. Polym. Mater. 2, 4559–4569 (2020).

    Google Scholar 

  45. Mitchell, J. B., Chen, L., Langworthy, K., Fabrizio, K. & Boettcher, S. W. Catalytic proton–hydroxide recombination for forward-bias bipolar membranes. ACS Energy Lett. 7, 3967–3973 (2022).

    Google Scholar 

  46. Chen, L., Xu, Q. & Boettcher, S. W. Kinetics and mechanism of heterogeneous voltage-driven water-dissociation catalysis. Joule 7, 1867–1886 (2023).

    Google Scholar 

  47. Lucas, É. et al. Asymmetric bipolar membrane for high current density electrodialysis operation with exceptional stability. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2023-n4c6x (2023).

  48. Mayerhöfer, B. et al. Bipolar membrane electrode assemblies for water electrolysis. ACS Appl. Energy Mater. 3, 9635–9644 (2020).

    Google Scholar 

  49. Mardle, P., Cassegrain, S., Habibzadeh, F., Shi, Z. & Holdcroft, S. Carbonate ion crossover in zero-gap, KOH anolyte CO2 electrolysis. J. Phys. Chem. C 125, 25446–25454 (2021).

    Google Scholar 

  50. Blommaert, M. A., Subramanian, S., Yang, K., Smith, W. A. & Vermaas, D. A. High indirect energy consumption in AEM-based CO2 electrolyzers demonstrates the potential of bipolar membranes. ACS Appl. Mater. Interfaces 14, 557–563 (2022).

    Google Scholar 

  51. Larrazábal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).

    Google Scholar 

  52. Endrődi, B. et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 13, 4098–4105 (2020).

    Google Scholar 

  53. Jeng, E. & Jiao, F. Investigation of CO2 single-pass conversion in a flow electrolyzer. React. Chem. Eng. 5, 1768–1775 (2020).

    Google Scholar 

  54. Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Google Scholar 

  55. Ma, M., Kim, S., Chorkendorff, I. & Seger, B. Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci. 11, 8854–8861 (2020).

    Google Scholar 

  56. Hansen, K. U., Cherniack, L. H. & Jiao, F. Voltage loss diagnosis in CO2 electrolyzers using five-electrode technique. ACS Energy Lett. 7, 4504–4511 (2022).

    Google Scholar 

  57. Khan, M. A. et al. Zero-crossover electrochemical CO2 reduction to ethylene with co-production of valuable chemicals. Chem. Catal. 2, 2077–2095 (2022).

    Google Scholar 

  58. Jeanty, P. et al. Upscaling and continuous operation of electrochemical CO2 to CO conversion in aqueous solutions on silver gas diffusion electrodes. J. CO2 Util. 24, 454–462 (2018).

    Google Scholar 

  59. Del Castillo, A. et al. Sn nanoparticles on gas diffusion electrodes: synthesis, characterization and use for continuous CO2 electroreduction to formate. J. CO2 Util. 18, 222–228 (2017).

    Google Scholar 

  60. Vennekoetter, J.-B., Sengpiel, R. & Wessling, M. Beyond the catalyst: how electrode and reactor design determine the product spectrum during electrochemical CO2 reduction. Chem. Eng. J. 364, 89–101 (2019).

    Google Scholar 

Download references

Acknowledgements

This work is part of the research programme Towards Large-Scale Electroconversion Systems financed by Shell and the top sectors Chemistry, High Tech Systems and Materials and Energy. This project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement 852115). This work reflects the authors’ views and the European Research Council Executive Agency is not responsible for any use resulting from the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc T. M. Koper, Thomas Burdyny or David A. Vermaas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Amitava Sarkar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Fig. 2

Table with data from 22 references and the calculations for Faradaic efficiency and CO2 crossover.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, K.V., Koopman, C.I., Subramanian, S. et al. Bipolar membranes for intrinsically stable and scalable CO2 electrolysis. Nat Energy 9, 932–938 (2024). https://doi.org/10.1038/s41560-024-01574-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-024-01574-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing