Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells

Abstract

Quantum dot (QD) provides a versatile platform for high-throughput processing of semiconductors for large-area optoelectronic applications. Unfortunately, the QD solar cell is hampered by the time-consuming layer-by-layer process, a major challenge in manufacturing printable devices. Here we demonstrate a sequential acylation-coordination protocol including amine-assisted ligand removal and Lewis base-coordinated surface restoration to synthesize conductive APbI3 (A = formamidinium (FA), Cs or methylammonium) colloidal perovskite QD (PeQD) inks that enable one-step PeQD film deposition without additional solid-state ligand exchange. The resultant PeQD film displays uniform morphology with elevated electronic coupling, more ordered structure and homogeneous energy landscape. Narrow-bandgap FAPbI3 PeQD-based solar cells achieve a champion efficiency of 16.61% (certified 16.20%), exceeding the values obtained with other QD inks and layer-by-layer processes. The conductive PeQD inks are compatible with large-area device (9 × 9 cm2) fabrication using the blade-coating technique with a speed up to 50 mm s−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and surface chemical characterization of stable PeQD inks.
Fig. 2: FAPbI3 PeQD ink deposition and film morphology.
Fig. 3: Optoelectronic properties and conductivity of PeQD films.
Fig. 4: Performance of the FAPbI3 PeQD solar cells.
Fig. 5: FAPbI3 PeQD inks for high-throughput large-area film and photovoltaic.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Kovalenko, M. V. Opportunities and challenges for quantum dot photovoltaics. Nat. Nanotechnol. 10, 994–997 (2015).

    Article  Google Scholar 

  2. Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  Google Scholar 

  3. Chen, Y. et al. Multiple exciton generation in tin–lead halide perovskite nanocrystals for photocurrent quantum efficiency enhancement. Nat. Photon. 16, 485–490 (2022).

    Article  Google Scholar 

  4. Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    Article  Google Scholar 

  5. Yuan, M. et al. Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 1, 16016 (2016).

    Article  Google Scholar 

  6. Jia, D. et al. Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule 6, 1632–1653 (2022).

    Article  Google Scholar 

  7. Jia, D. et al. Inhibiting lattice distortion of CsPbI3 perovskite quantum dots for solar cells with efficiency over 16.6%. Energy Environ. Sci. 15, 4201–4212 (2022).

    Article  Google Scholar 

  8. Shi, J. et al. In situ iodide passivation toward efficient CsPbI3 perovskite quantum dot solar cells. Nano Micro Lett. 15, 163 (2023).

    Article  Google Scholar 

  9. Zhao, Q. et al. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 10, 2842 (2019).

    Article  Google Scholar 

  10. Hao, M. et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020).

    Article  Google Scholar 

  11. Jia, D. et al. Antisolvent-assisted in situ cation exchange of perovskite quantum dots for efficient solar cells. Adv. Mater. 35, e2212160 (2023).

    Article  Google Scholar 

  12. Aqoma, H. et al. Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells. Nat. Energy 9, 324–332 (2024).

    Article  Google Scholar 

  13. Sun, B. et al. Monolayer perovskite bridges enable strong quantum dot coupling for efficient solar cells. Joule 4, 1–15 (2020).

    Article  Google Scholar 

  14. Kim, H. I. et al. A tuned alternating D–A copolymer hole-transport layer enables colloidal quantum dot solar cells with superior fill factor and efficiency. Adv. Mater. 32, 2004985 (2020).

    Article  Google Scholar 

  15. Zhao, Q. et al. Colloidal quantum dot solar cells: progressive deposition techniques and future prospects on large-area fabrication. Adv. Mater. 34, e2107888 (2022).

    Article  Google Scholar 

  16. Yuan, J. et al. Metal Halide perovskites in quantum dot solar cells: progress and prospects. Joule 4, 1–26 (2020).

    Article  Google Scholar 

  17. Ling, X. et al. The rise of colloidal lead halide perovskite quantum dot solar cells. Acc. Mater. Res. 3, 866–878 (2022).

    Article  Google Scholar 

  18. Wang, Y. et al. Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nat. Commun. 10, 5136 (2019).

    Article  Google Scholar 

  19. Akkerman, Q. A. et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    Article  Google Scholar 

  20. Almeida, G. et al. Resurfacing halide perovskite nanocrystals. Science 364, 833–834 (2019).

    Article  Google Scholar 

  21. Kim, J. et al. Single-step-fabricated perovskite quantum dot photovoltaic absorbers enabled by surface ligand manipulation. Chem. Eng. J. 448, 137672 (2022).

    Article  Google Scholar 

  22. Song, H. et al. A universal perovskite nanocrystal ink for high-performance optoelectronic devices. Adv. Mater. 35, e2209486 (2023).

    Article  Google Scholar 

  23. Xue, J. et al. Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule 2, 1866–1878 (2018).

    Article  Google Scholar 

  24. Hoshi, K. et al. Purification of perovskite quantum dots using low-dielectric-constant washing solvent ‘Diglyme’ for highly efficient light-emitting devices. ACS Appl. Mater. Interfaces 10, 24607–24612 (2018).

    Article  Google Scholar 

  25. Wang, Y. et al. Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance. Adv. Mater. 32, e2000449 (2020).

    Article  Google Scholar 

  26. Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article  Google Scholar 

  27. Xue, J. et al. The surface of halide perovskites from nano to bulk. Nat. Rev. Mater. 5, 809–827 (2020).

    Article  Google Scholar 

  28. Zhang, X. et al. Ligand-assisted coupling manipulation for efficient and stable FAPbI3 colloidal quantum dot solar cells. Angew. Chem. Int. Ed. 62, e202214241 (2023).

    Article  Google Scholar 

  29. Li, F. et al. Solution‐Mediated hybrid FAPbI3 perovskite quantum dots for over 15% efficient solar cell. Adv. Funct. Mater. 33, 2302542 (2023).

    Article  Google Scholar 

  30. Liu, F. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 11, 10373–10383 (2017).

    Article  Google Scholar 

  31. deQuilettes, D. W. et al. Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation. ACS Energy Lett. 1, 438–444 (2016).

    Article  Google Scholar 

  32. Huang, H. et al. High-efficiency perovskite quantum dot photovoltaic with homogeneous structure and energy landscape. Adv. Funct. Mater. 33, 2210728 (2023).

    Article  Google Scholar 

  33. Zhang, X. et al. Homojunction perovskite quantum dot solar cells with over 1 μm-thick photoactive layer. Adv. Mater. 34, e2105977 (2022).

    Article  Google Scholar 

  34. de Weerd, C. et al. Efficient carrier multiplication in CsPbI3 perovskite nanocrystals. Nat. Commun. 9, 4199 (2018).

    Article  Google Scholar 

  35. Hu, L. et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12, 466 (2021).

    Article  Google Scholar 

  36. Liu, M. et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16, 258–263 (2017).

    Article  Google Scholar 

  37. Li, F. et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17, 478–484 (2023).

    Article  Google Scholar 

  38. Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).

    Article  Google Scholar 

  39. Ni, Z. et al. Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nat. Energy 7, 65–73 (2021).

    Article  Google Scholar 

  40. Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  Google Scholar 

  41. Wu, Y. et al. Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy Environ. Sci. 15, 4700–4709 (2022).

    Article  Google Scholar 

  42. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  Google Scholar 

  43. Jia, D. et al. Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%. Energy Environ. Sci. 14, 4599–4609 (2021).

    Article  Google Scholar 

  44. Deng, Y. et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 3, 560–566 (2018).

    Article  Google Scholar 

  45. Huang, H. et al. Controllable colloidal synthesis of MAPbI3 perovskite nanocrystals for dual-mode optoelectronic applications. Nano Lett. 23, 9143–9150 (2023).

    Article  Google Scholar 

  46. Kresse, G. et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  47. Perdew, J. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  48. Blöchl, P. et al. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  49. Grimme, S. et al. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  Google Scholar 

  50. Liu, M. et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16, 258–263 (2016).

    Article  Google Scholar 

  51. Yang, Z. et al. Mixed-quantum-dot solar cells. Nat. Commun. 8, 1325 (2017).

    Article  Google Scholar 

  52. Xu, J. et al. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nat. Nanotechnol. 13, 456–462 (2018).

    Article  Google Scholar 

  53. Liu, M. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature 570, 96–101 (2019).

    Article  Google Scholar 

  54. Baek, S.-W. et al. Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nat. Energy 4, 969–976 (2019).

    Article  Google Scholar 

  55. Ding, C. et al. Over 15% efficiency PbS quantum‐dot solar cells by synergistic effects of three interface engineering: reducing nonradiative recombination and balancing charge carrier extraction. Adv. Energy Mater. 12, 2201676 (2022).

    Article  Google Scholar 

  56. Ahmad, W. et al. Lead selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency. Adv. Mater. 31, 1900593 (2019).

    Article  Google Scholar 

  57. Fang, S. et al. Open-shell diradical-sensitized electron transport layer for high-performance colloidal quantum dot solar cells. Adv. Mater. 35, 2212184 (2023).

    Article  Google Scholar 

  58. Liu, Y. et al. PbSe quantum dot solar cells based on directly synthesized semiconductive inks. ACS Energy Lett. 5, 3797–3803 (2020).

    Article  Google Scholar 

  59. Akkerman, Q. A. et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2, 16194 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (no. 2023YFE0210000) (J.Y.), the National Natural Science Foundation of China (no. 52261145696) (J.Y.), China National Postdoctoral Program for Innovative Talents (BX20230255) (X.Z.), China Postdoctoral Science Foundation (2023M742527) (X.Z.), Natural Science Foundation of Jiangsu Province (BK20211598) (J.Y.) and Jiangsu Funding Program for Excellent Postdoctoral Talent (2023ZB405) (X.Z.), ‘111’ project, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University. This work was partly supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (no. 2020R1A2C2005844) (D.-H.K.).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and J.Y. conceived the project, and W.M. and J.Y. supervised the project. X.Z., H.H. and C.Z. synthesized the FAPbI3, MAPbI3 and CsPbI3 PeQDs, respectively. X.Z. fabricated the PeQD inks, PeQD films and devices and conducted most of the characterizations and experimental analysis. H.H. and C.Z conducted the TEM, DLS and NMR characterizations. L.J. performed the DFT simulations supervised by Y.L. C.L. conducted the GISAXS measurements supervised by D.-H.K. X.Z. drafted the manuscript and revised the manuscript with help from T.W., W.M. and J.Y. All the authors reviewed the paper.

Corresponding authors

Correspondence to Wanli Ma or Jianyu Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Guoran Li, Lianzhou Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Tables 1–4 and Note 1.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Figs. 18 and 22.

Source data

Source Data Fig. 1

DLS, FTIR, NMR and Pb 4f spectra source data.

Source Data Fig. 2

Azimuthal integration data extracted from GIWAXS and in-plane line-cuts data extracted from GISAXS.

Source Data Fig. 3

TA mapping source data, current intensity distribution data extracted from c-AFM, and SCLC source data.

Source Data Fig. 4

Device performance source data.

Source Data Fig. 5

PL emission and PL lifetime maps source data and device performance data of large-area PQD films.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Huang, H., Zhao, C. et al. Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells. Nat Energy 9, 1378–1387 (2024). https://doi.org/10.1038/s41560-024-01608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-024-01608-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing