Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Membrane separations

Facilitating decision making

Nanofiltration membranes can potentially lower the energy demands of separation processes, yet identifying promising systems for further development can be challenging. Now, data-driven and equation-based modelling is used to holistically compare and select optimal separation processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hybrid modelling approach for identification of energy-efficient membrane processes.

References

  1. A Research Agenda for Transforming Separation Science (The National Academies Press, 2019).

  2. Ignacz, G., Beke, A. K., Toth, V. & Szekely, G. Nat. Energy https://doi.org/10.1038/s41560-024-01668-7 (2024).

    Article  Google Scholar 

  3. Baker, R. W. Membrane Technology and Applications (John Wiley & Sons, 2012).

  4. Karan, S., Jiang, Z. & Livingston, A. G. Science 348, 1347–1351 (2015).

    Article  Google Scholar 

  5. Chisca, S. et al. Science 376, 1105–1110 (2022).

    Article  Google Scholar 

  6. Thompson, K. A. et al. Science 369, 310–315 (2020).

    Article  Google Scholar 

  7. Lively, R. P. & Sholl, D. S. Nat. Mater. 16, 276–279 (2017).

    Article  Google Scholar 

  8. Lee, T. H., Balcik, M., Wu, W.-N., Pinnau, I. & Smith, Z. P. Sci. Adv. 10, eadp6666 (2024).

    Article  Google Scholar 

  9. Peshev, D. & Livingston, A. G. Chem. Eng. Sci. 104, 975–987 (2013).

    Article  Google Scholar 

  10. Marchetti, P., Jimenez Solomon, M. F., Szekely, G. & Livingston, A. G. Chem. Rev. 114, 10735–10806 (2014).

    Article  Google Scholar 

  11. Huliienko, S., Kornienko, Y., Muzyka, S. & Holubka, K. Chem. Chem. Technol. 18, 187–199 (2024).

    Article  Google Scholar 

  12. Marchetti, P. & Livingston, A. G. J. Membr. Sci. 476, 530–553 (2015).

    Article  Google Scholar 

  13. Mathew, T. J. et al. Joule 6, 2500–2512 (2022).

    Article  Google Scholar 

  14. Hasan, M. M. F., Baliban, R. C., Elia, J. A. & Floudas, C. A. Ind. Eng. Chem. Res. 51, 15665–15682 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tsapatsis.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsapatsis, M. Facilitating decision making. Nat Energy 10, 289–290 (2025). https://doi.org/10.1038/s41560-025-01732-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-025-01732-w

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene